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Abstract

A key component of research on human sentence processing is to characterize the processing

difficulty associated with the comprehension of words in context. Models that explain and predict

this difficulty can be broadly divided into two kinds, expectation-based and memory-based. In this

work, we present a new model of incremental sentence processing difficulty that unifies and

extends key features of both kinds of models. Our model, lossy-context surprisal, holds that the

processing difficulty at a word in context is proportional to the surprisal of the word given a lossy
memory representation of the context—that is, a memory representation that does not contain

complete information about previous words. We show that this model provides an intuitive expla-

nation for an outstanding puzzle involving interactions of memory and expectations: language-de-

pendent structural forgetting, where the effects of memory on sentence processing appear to be

moderated by language statistics. Furthermore, we demonstrate that dependency locality effects, a

signature prediction of memory-based theories, can be derived from lossy-context surprisal as a

special case of a novel, more general principle called information locality.

Keywords: Psycholinguistics; Sentence processing; Information theory

1. Introduction

For a human to understand natural language, they must process a stream of input symbols

and use them to build a representation of the speaker’s intended message. Over the years,

extensive evidence from experiments as well as theoretical considerations has led to the
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conclusion that this process is incremental: The information contained in each word is

immediately integrated into the listener’s representation of the speaker’s intent. This is an

integration of two parts: The listener must combine a representation r, built based on what

she has heard so far, with the current symbol w to form a new representation r’. Under a
strong assumption of incrementality, the process of language comprehension is fully charac-

terized by an integration function which takes a representation r and an input symbol w and

produces an output representation r’. When this function is applied successively to the sym-

bols in an utterance, it results in the listener’s final interpretation of the utterance. The incre-

mental view of language processing is summarized in Fig. 1.

The goal of much research in psycholinguistics has been to characterize this integration

function by studying patterns of differential difficulty in sentence comprehension. Some

utterances are harder to understand than others, and within utterances some parts seem to

engender more processing difficulty than others. This processing difficulty can be

observed in the form of various dependent variables such as reading time, pupil dilation,

event-related potentials on the scalp, etc. By characterizing the processing difficulty that

occurs when each symbol is integrated, we hope to be able to sketch an outline of the

processes going on inside the integration function for certain inputs.

The goal of this paper is to give a high-level information-theoretic characterization of the

integration function along with a linking hypothesis to processing difficulty which is capable

of explaining diverse phenomena in sentence processing. In particular, we aim to introduce

a processing cost function that can derive the effects of both probabilistic expectations and

memory limitations, which have previously been explained under disparate and hard-to-inte-

grate theories. Furthermore, our processing cost function is capable of providing intuitive

explanations for complex phenomena at the intersection of probabilistic expectations and

memory limitations, which no explicit model has been able to do previously.

Broadly speaking, models of difficulty in incremental sentence processing can be

divided into two categories. The first are expectation-based theories, which hold that the

observed difficulty in processing a word (or phoneme, or any other linguistic unit) is a

function of how predictable that word is given the preceding context. The idea is that if

a word is predictable in its context, then an optimal processor will already have done the
work of processing that word, and so very little work remains to be done when the pre-

dicted word is really encountered (Hale, 2001; Jurafsky, 2003).

Fig. 1. A schematic view of incremental language comprehension. An utterance is taken to be a stream of

symbols denoted w, which could refer to either words or smaller units such as morphemes or phonemes.

Upon receiving the ith symbol wi, the listener combines it with the previous incremental representation ri�1

to form ri. The function which combines wi and ri�1 to yield ri is called the integration function.
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The second class of sentence processing theories is memory-based theories: the core idea
is that during the course of incremental processing, the integration of certain words into the

listener’s representation requires that representations of previous words be retrieved from

working memory (Gibson, 1998; Lewis & Vasishth, 2005). This retrieval operation might

cause inherent difficulty, or it might be inaccurate, which would lead to difficulty indirectly.

In either case, these theories essentially predict difficulty when words that must be inte-

grated together are far apart in linear order when material intervenes between those words

which might have the effect of making the retrieval operation difficult.

This paper advances a new theory, called lossy-context surprisal theory, where the pro-

cessing difficulty of a word is a function of how predictable it is given a lossy represen-
tation of the preceding context. This theory is rooted in the old idea that observed

processing difficulty reflects Bayesian updating of an incremental representation given

new information provided by a word or symbol, as in surprisal theory (Hale, 2001; Levy,

2008a). It differs from surprisal theory in that the incremental representation is allowed

to be lossy; that is, it is not necessarily possible to determine the true linguistic context

leading up to the ith word wi from the incremental representation ri�1.

We show that lossy-context surprisal can, under certain assumptions, model key effects

of memory retrieval such as dependency locality effects (Gibson, 1998, 2000), and it can

also provide simple explanations for complex phenomena at the intersection of probabilis-

tic expectations and memory retrieval, such as structural forgetting (Frank, Trompenaars,

Lewis, & Vasishth, 2016; Gibson & Thomas, 1999; Vasishth, Suckow, Lewis, & Kern,

2010). We also show that this theory makes major new predictions about production pref-

erences and typological patterns under the assumption that languages have evolved to

support efficient processing (Gibson et al., 2019; Jaeger & Tily, 2011).

The remainder of the paper is organized as follows. First, in Section 2, we provide

background on previous memory- and expectation-based theories of language comprehen-

sion and attempts to unify them, as well as a brief accounting of phenomena which a

combined theory should be able to explain. In Section 3, we introduce the theory of

lossy-context surprisal and clarify its relation with standard surprisal and previous related

theories. In Section 4, we show how the model explains language-dependent structural

forgetting effects. In Section 5, we show how the model derives dependency locality

effects. Finally, in Section 6, we outline future directions for the theory in terms of theo-

retical development and empirical testing.

2. Background

Here we survey two major classes of theories of sentence processing difficulty, expec-

tation-based theories and memory-based theories. We will exemplify expectation-based

theories with surprisal theory (Hale, 2001; Levy, 2008a) and memory-based theories with

the dependency locality theory (Gibson, 1998, 2000). In Section 3, we will propose that

these theories can be understood as special cases of lossy-context surprisal.
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2.1. Expectation-based theories: Surprisal theory

Expectation-based theories hold that processing difficulty for a word is determined by

how well expected that word is in context. The idea that processing difficulty is related

to probabilistic expectations has been given a rigorous mathematical formulation in the

form of surprisal theory (Hale, 2001, 2016; Levy, 2008a), which holds that the observed

processing difficulty D (as reflected in e.g., reading times) is directly proportional to the

surprisal of a word wi in a context c, which is equal to the negative log probability of

the word in context:

DsurprisalðwijcÞ / � log pðwijcÞ: ð1Þ

Here “context” refers to all the information in the environment which constrains what

next word can follow, including information about the previous words that were uttered

in the sentence. As we will explain below, this theory is equivalent to the claim that the

incremental integration function is a highly efficient Bayesian update to a probabilistic

representation of the latent structure of an utterance.

Why should processing time be proportional to the negative logarithm of the probabil-

ity? Levy (2013, pp. 158–160) reviews several justifications for this choice, all grounded

in theories of optimal perception and inference. Here we draw attention to one such justi-

fication: that surprisal is equivalent to the magnitude of the change to a representation of

latent structure given the information provided by the new word. This claim is deduced

from three assumptions: (a) that the latent structure is a representation of a generative

process that generated the string (such as a parse tree), (b) that this representation is

updated by Bayesian inference given a new word, and (c) that the magnitude of the

change to the representation should be measured using relative entropy (Cover & Tho-

mas, 2006). This justification is described in more detail in Levy (2008a).

More generally, surprisal theory links language comprehension to theories of percep-

tion and brain function that are organized around the idea of prediction and predictive
coding (Clark, 2013; Friston, 2010; Friston & Kiebel, 2009), in which an internal

model of the world is used to generate top-down predictions about the future stimuli,

then these predictions are compared with the actual stimuli, and action is taken as a

result of the difference between predictions and perception. Such predictive mechanisms

are well-documented in other cognitive domains, such as visual perception (Egner,

Monti, & Summerfield, 2010), auditory and music perception (Agres, Abdallah, &

Pearce, 2018), and motor planning (Wolpert & Flanagan, 2001).

In addition to providing an intuitive information-theoretic and Bayesian view of lan-

guage processing, surprisal theory has the theoretical advantage of being representation-
agnostic: The surprisal of a word in its context gives the amount of work required to

update a probability distribution over any latent structures that must be inferred from an

utterance. These structures could be syntactic parse trees, semantic parses, data structures

representing discourse variables, or distributed vector-space representations. This repre-

sentation-agnosticism is possible because the ultimate form of the processing cost
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function in Eq. 1 depends only on the word and its context, and the latent representation

literally does not enter into the equation. As we will see, lossy-context surprisal will not

be able to maintain the same degree of representation-agnosticism.

The predictions of surprisal theory have been validated on many scales. The basic

idea that reading time is a function of probability in context goes back to Marslen-Wil-

son (1975) (see Jurafsky, 2003, for a review). Hale (2001) and Levy (2008a) show that

surprisal theory explains diverse phenomena in sentence processing, such as effects of

syntactic construction frequency, garden path effects, and antilocality effects

(Konieczny, 2000), which are cases where a word becomes easier to process as more

material is placed before it. In addition, Boston, Hale, Kliegl, Patil, and Vasishth

(2008) show that reading times are well-predicted by surprisal theory with a sophisti-

cated probability model derived from an incremental parser, and Smith and Levy

(2013) show that the effect of probability on incremental reading time is in robustly

logarithmic over six orders of magnitude in probability. Outside the domain of reading

times, Frank, Otten, Galli, and Vigliocco (2015) and Hale, Dyer, Kuncoro, and Brennan

(2018) have found that surprisal values calculated using a probabilistic grammar can

predict EEG responses.

Surprisal theory does not require that comprehenders are able to predict the following

word in context with certainty, nor does it imply that they are actively making explicit

predictions about the following word. Rather, surprisal theory relies on the notion of

“graded prediction” in the terminology of Luke and Christianson (2016): All that matters

is the numerical probability of the following word in context according to a latent proba-

bility model which the comprehender knows. In practice, we do not have access to this

probability model, but for the purpose of calculation it has been useful to approximate

this model using probabilistic context-free grammars (PCFGs) (Hale, 2001; Levy, 2008a),

n-gram models (Smith & Levy, 2013), LSTM language models (Goodkind & Bicknell,

2018b), and recurrent neural network grammars (RNNGs) (Dyer, Kuncoro, Ballesteros, &

Smith, 2016; Hale et al., 2018). The question of how to best estimate the comprehender’s

latent probability model is still outstanding.

Although surprisal theory has robust empirical support, as well as compelling theoreti-

cal motivations, there is a class of sentence processing difficulty phenomena which sur-

prisal theory does not model, and in fact cannot model due to certain strong assumptions.

These are effects of memory retrieval, which we describe below.

2.2. Memory-based theories: Dependency locality effects

Another large class of theories of sentence processing difficulty is memory-based theo-

ries. While expectation-based theories are forward-looking, claiming that processing diffi-

culty has to do with predicting future words, memory-based theories are backwards-

looking, holding that processing difficulty has to do with information processing that must

be done on a representation of previous words in order to integrate them with the current

word. There are many memory-based models of processing difficulty that have been used

to explain various patterns of data. In this section we will focus on a key prediction in
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common among various theories: the prediction of dependency locality effects, which we

will derive from lossy-context surprisal in Section 5.

Dependency locality effects consist of processing difficulty due to the integration of

words or constituents that are far apart from each other in linear order.1 The integration

cost appears to increase with distance. For example, consider the sentences in (1):

(1) a. Bob threw out the trash.

b. Bob threw the trash out.

c. Bob threw out the old trash that had been sitting in the kitchen for several days.

d. Bob threw the old trash that had been sitting in the kitchen for several days out.

These sentences all contain the phrasal verb threw out. We can say that a dependency

exists between threw and out because understanding the meaning of out in context

requires that it be integrated specifically with the head verb threw in order to form a rep-

resentation of the phrasal verb, whose meaning is not predictable from either part alone

(Jackendoff, 2002). Sentences (1a) and (1b) show that it is possible to vary the placement

of the particle out; these sentences can be understood with roughly equal effort. However,

this symmetry is broken for the final two sentences: When the direct object NP is long,

Sentence (1d) sounds awkward and difficult to English speakers when compared with

Sentence (1c). This low acceptability is hypothesized to be due to a dependency locality

effect: When out is far from threw, processing difficulty results (Lohse, Hawkins, &

Wasow, 2004).

The hypothesized source of the dependency locality effect is working memory con-

straints. When reading through Sentence (1d), when the comprehender gets to the word

out, she must integrate a representation of this word with a representation of the previous

word threw in order to understand the sentence as containing a phrasal verb. For this to

happen, the representation of threw must be retrieved from some working memory repre-

sentation. But if the representation of threw has been in working memory for a long time

—corresponding to the long dependency—then this retrieval operation might be difficult

or inaccurate, and moreover the difficulty or inaccuracy might increase the longer the rep-

resentation has been in memory. Thus, dependency locality effects are associated with

memory constraints and specifically with difficulty in the retrieval of linguistic represen-

tations from working memory.

Dependency locality effects are most prominently predicted by the dependency locality

theory (Gibson, 1998, 2000), where they appear in the form of an integration cost compo-

nent. They are also generally predicted by activation-based models such as Lewis and

Vasishth (2005), where the retrieval of information about a previous word becomes more

difficult or inaccurate with distance, due to either inherent decay or due to cumulative

similarity-based interference from intervening material (Gordon et al., 2001, 2004; Lewis,

Vasishth, & van Dyke, 2006; McElree, 2000; McElree, Foraker, & Dyer, 2003; van Dyke

& McElree, 2006).
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Dependency locality effects plausibly underly several disparate phenomena in sentence

processing. Dependency locality offers a unified explanation of PP attachment prefer-

ences, the difficulty of multiple center-embedding, and the relative difficulty of object-ex-

tracted relative clauses over subject-extracted relative clauses, among other explananda.

Some of the strongest experimental evidence for locality effects comes from reading

time studies such as Grodner and Gibson (2005) and Bartek, Lewis, Vasishth, and Smith

(2011). In these studies, the distance between words linked in a dependency is progres-

sively increased, and a corresponding increase in reading time on the second word (the

embedded verb) is observed. Some example sentences are given below, where the words

linked in dependencies are presented in boldface.

(2) a. The administrator who the nurse supervised. . .
b. The administrator who the nurse from the clinic supervised. . .
c. The administrator who the nurse who was from the clinic supervised. . .

Similar results have been shown for Spanish (Nicenboim, Loga�cev, Gattei, & Vasishth,

2016; Nicenboim, Vasishth, Gattei, Sigman, & Kliegl, 2015) and Danish (Balling &

Kizach, 2017). The connection between dependency locality effects and working memory

has been confirmed in experiments such as Fedorenko, Woodbury, and Gibson (2013),

which introduce working memory interference, and Nicenboim et al. (2015), who corre-

late locality effects with individual differences in working memory capacity (finding a

surprisingly complex relation).

While there is strong evidence for on-line locality effects in controlled experiments on

specific dependencies, evidence from a broader range of structures and from naturalistic

reading time data is mixed. In sentences such as 2, there should also be a dependency

locality effect on the following matrix verb, which is indeed detected by Bartek et al.

(2011); however, Staub, Dillon, and Clifton (2017) find that when the dependency-length-

ening material is added after the embedded verb supervised, the matrix verb is read fas-

ter. In the realm of naturalistic reading time data, Demberg and Keller (2008a) do not

find evidence for locality effects on reading times of arbitrary words in the Dundee cor-

pus, though they do find evidence for locality effects for nouns. Studying a reading-time

corpus of Hindi, Husain, Vasishth, and Srinivasan (2015) do not find evidence for DLT

integration cost effects on reading time for arbitrary words, but they do find effects on

outgoing saccade length. These mixed results suggest that locality effects may vary in

strength depending on the words, constructions, and dependent variables involved.

Dependency locality effects are the signature prediction of memory-based models of

sentence processing. However, they are not the only prediction. Memory-based models

have also been used to study agreement errors and the interpretation of anaphora (see

J€ager, Engelmann, & Vasishth, 2017, for a review of some key phenomena). We do not

attempt to model these effects in the present study with lossy-context surprisal, but we

believe it may be possible, as discussed in Section 6.
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2.3. The intersection of expectations and memory

A unified theory of the effects of probabilistic expectations and memory retrieval is

desirable because a number of phenomena seem to involve interactions of these two fac-

tors. However, attempts to combine these theories have met with difficulties because the

two theories are stated at very different levels of analysis. Surprisal theory is a high-level

computational theory which only claims that incremental language processing consists of

highly efficient Bayesian updates. Memory-based theories are mechanistic theories based

in specific grammatical formalisms, parsing algorithms, and memory architectures which

attempt to describe the internal workings of the integration function mechanistically.

The most thoroughly worked out unified model is prediction theory, based on Psy-

cholinguistically-Motivated Lexicalized Tree Adjoining Grammar (PLTAG) (Demberg,

2010; Demberg & Keller, 2008b, 2009; Demberg, Keller, & Koller, 2013). This model

combines expectation and memory at a mechanistic level of description, by augmenting a

PLTAG parser with PREDICT and VERIFY operations in addition to the standard tree-building

operations. In this model, processing difficulty is proportional to the surprisal of a word

given the probability model defined by the PLTAG formalism, plus the cost of verifying

that predictions made earlier in the parsing process were correct. This verification cost

increases when many words intervene between the point where the prediction is made

and the point where the prediction is verified; thus, the model derives locality effects in

addition to surprisal effects. Crucially, in this theory, probabilistic expectations and local-

ity effects only interact in a highly limited way: Verification cost is stipulated to be a

function only of distance and the a priori probability of the predicted structure.

Another parsing model that unifies surprisal effects and dependency locality effects is

the left-corner parser of Rasmussen and Schuler (2018). This is an incremental parsing

model where the memory store from which derivation fragments are retrieved is an asso-

ciative store subject to similarity-based interference which results in slowdown at retrie-

val events. The cumulative nature of similarity-based interference explains locality

effects, and surprisal effects result from a renormalization that is required of the vectorial

memory representation at each derivation step. It is difficult to derive predictions about

the interaction of surprisal and locality from this model, but we believe that it broadly

predicts that they should be independent.

To some extent, surprisal and locality-based models explain complementary sets of

data (Demberg & Keller, 2008a; Levy & Keller, 2013), which justifies “two-factor” mod-

els where their interactions are limited. For instance, one major datum explained by local-

ity effects but not surprisal theory is the relative difficulty of object-extracted relative

clauses over subject-extracted relative clauses, and in particular the fact that object-ex-

tracted relative clauses have increased difficulty at the embedded verb (Grodner & Gib-

son, 2005; Levy, Fedorenko, & Gibson, 2013) (though see Forster, Guerrera, & Elliot,

2009; Staub, 2010). Adding DLT integration costs or PLTAG verification costs to sur-

prisal costs results in a theory that can explain the relative clause data while maintaining

the accuracy of surprisal theory elsewhere (Demberg et al., 2013).
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However, a number of phenomena seem to involve a complex interaction of memory

and expectations. These are cases where the working memory resources that are taxed in

the course of sentence processing appear to be themselves under the influence of proba-

bilistic expectations.

A prime example of such an interaction is the phenomenon of language-dependent
structural forgetting. This phenomenon will be explained in more detail in Section 4,

where we present its explanation in terms of lossy-context surprisal. Essentially, structural

forgetting is a phenomenon where listeners’ expectations at the end of a sentence do not

match the beginning of the sentence, resulting in processing difficulty. The phenomenon

has been demonstrated in sentences with multiple nested verb-final relative clauses in

English (Gibson & Thomas, 1999) and French (Gimenes, Rigalleau, & Gaonac’h, 2009).

However, the effect does not appear for the same structures in German or Dutch (Frank

et al., 2016; Vasishth et al., 2010), suggesting that German and Dutch speakers’ memory

representations of these structures are different. Complicating the matter even further,

Frank et al. (2016) find the forgetting effect in Dutch and German L2 speakers of Eng-

lish, suggesting that their exposure to the distributional statistics of English alter their

working memory representations of English sentences.

The language dependence of structural forgetting, among other phenomena, has led to

the suggestion that working memory retrieval operations can be more or less easy

depending on how often listeners have to do them. Thus, German and Dutch speakers

who are used to verb-final structures do not find the memory retrievals involved difficult,

because they have become skilled at this task (Vasishth et al., 2010). As we will see,

lossy-context surprisal reproduces the language-dependent data pattern of structural for-

getting in a way that depends on distributional statistics. Whether or not its mechanism

corresponds to a notion of “skill” is a matter of interpretation.

Further data about the intersection of probabilistic expectations and memory come

from studies which directly probe whether memory effects occur in cases where proba-

bilistic expectations are strong and whether probabilistic expectation effects happen when

memory pressures are strong. These data are mixed. Studying Hindi relative clauses,

Husain, Vasishth, and Srinivasan (2014) find that increasing the distance between a verb

and its arguments makes the verb easier to process when the verb is highly predictable

(in line with expectation-based theories) but harder to process when the verb is less pre-

dictable (in line with memory-based theories). On the other hand, Safavi, Husain, and

Vasishth (2016) do not find evidence for this effect in Persian.

To summarize, expectation-based and memory-based models are both reasonably suc-

cessful in explaining sentence processing phenomena, but the field has lacked a meaning-

ful integration of the two, in that combined models have only made limited predictions

about phenomena involving both expectations and memory limitations. The existence of

these complex phenomena at the intersection of probabilistic expectations and memory

constraints motivates a unified theory of sentence processing difficulty which can make

interesting predictions in this intersection.
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3. Lossy-context surprisal

Now we will introduce our model of sentence processing difficulty. The fundamental

motivation for this model is to try to capture memory effects within an expectation-based

framework. Our starting point is to note that no purely expectation-based model, as

described above in Section 2.1, can handle forgetting effects such as dependency locality or

structural forgetting, because these models implicitly assume that the listener has access to a

perfect representation of the preceding linguistic context. Concretely, consider the problem

of modeling the processing difficulty at the word out in example (1d). Surprisal theory has

no way of predicting the high difficulty associated with comprehending this word. The rea-

son is that as the amount of intervening material before the particle out increases, the word
out (or some other constituent fulfilling its role) actually becomes more predictable, because
the intervening material successively narrows down the ways the sentence might continue.

Lossy-context surprisal holds that the processing difficulty of a word is its surprisal

given a lossy memory representation of the context. Whereas surprisal theory is associated

with the prediction problem schematized in Fig. 2a, lossy-context surprisal theory is asso-

ciated with the prediction problem in Fig. 2b. The true context gives rise to a memory rep-

resentation, and the listener uses the memory representation to predict the next word.

3.1. Formal statement of lossy-context surprisal theory

Lossy-context surprisal theory augments surprisal theory with a model of memory. The

theory makes four claims:

Claim 1: (Incrementality of memory.) Working memory in sentence processing can be

characterized by a probabilistic memory encoding function m : R�W ! R which takes a

memory representation r 2 R and combines it with the current word w 2 W to produce

(A)

(B)

Fig. 2. Probabilistic models associated with surprisal theory (left) and lossy-context surprisal theory (right).

Processing difficulty is associated with the problem of prediction given the shaded nodes. There is a context

C, and L is the conditional distribution of the next word W given the context C, representing a comprehen-

der’s knowledge of language. In surprisal theory, we presume that C is observed, and that processing diffi-

culty is associated with the problem of predicting W given C (indicated with the dotted line). In lossy-context

surprisal theory, we add a random variable R ranging over memory representations; M is the conditional dis-

tribution of R given C. Processing difficulty is associated with the problem of predicting W given R.
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the next memory representation r0 = m(r, w). We write Mðw1; . . .; wiÞ to denote the

result of applying m successively to a sequence of words w1; . . .; wi.

Claim 2: (Linguistic knowledge.) Comprehenders have access to a probability model L
giving the distribution of the next word wi given a context c, where c is a sequence of

words w1; . . .; wi�1. In general, the probability model L may also incorporate non-linguis-

tic contextual information, such that L represents the comprehender’s knowledge of lan-

guage in conjunction with all other sources of knowledge that contribute to predicting the

next word.

Claim 3: (Inaccessibility of context.) Comprehenders do not have access to the true lin-

guistic context c; they only have access to the memory representation given by M(c).

Claim 4: (Linking hypothesis.) Incremental processing difficulty for the current word wi

is proportional to the surprisal of wi given the previous memory representation ri�1::

Dlc surprisalðwii� 1Þ / � log pðwii� 1Þ: ð2Þ

The listener’s internal memory representation ri�1 is hidden to us as experimenters, so

Eq. 2 does not make direct experimental predictions. However, if we have a probabilistic

model of how context c gives rise to memory representations r, we can use that model to

calculate the processing cost of the word wi in context c based on the expected surprisal
of wi considering all the possible memory representations. Therefore, we predict incre-

mental processing difficulty as:

Dlc surprisalðwijcÞ / Eri�1 �MðcÞ � log pðwii� 1Þ½ �: ð3Þ

The implied probability model of Claims 1–4 is shown in Fig. 2b as a Bayesian net-

work. Eq. 3 encompasses the core commitments of lossy-context surprisal theory: Pro-

cessing difficulty for a word is proportional to the expected surprisal of that word given

the possible memory representations of its context. What follows in this section is a series

of deductions from these claims, involving no further assumptions. In Sections 4 and 5,

we introduce further assumptions about the memory encoding function M in order to

derive more concrete psycholinguistic predictions.

3.2. Modeling memory as noise

We call the memory representation r lossy, meaning that it might not contain complete

information about the context c. The term comes from the idea of lossy compression,

where data are turned into a compressed form such that the original form of the data can-

not be reconstructed with perfect accuracy (Nelson & Gailly, 1996). Equivalently, we can
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see r as a noisy representation of c: a version of the true context where some of the infor-

mation has been obscured by noise, in the same way that an image on a television screen

can be obscured by white noise.

To make predictions with lossy-context surprisal, we do not have to fully specify the

form of the memory representation r. Rather, all we have to model is what information is
lost when context c is transformed into a memory representation r, or equivalently, how
noise is added to the context c to produce r. The predictions of lossy-context surprisal

theory as to incremental difficulty are the same for all memory models that have the same

characteristics in terms of what information is preserved and lost. The memory represen-

tation could be a syntactic structure, it could be a value in an associative content-address-

able store, or it could be a high-dimensional embedding as in a neural network; all that

matters for lossy-context surprisal is what information about the true context can be

recovered from the memory representation.

For this reason, we will model memory using what we call a noise distribution: a con-

ditional distribution of memory representations given contexts, which captures the broad

information-loss characteristics of memory by adding noise to the contexts. For example,

in Section 5 below, we use a noise distribution drawn from the information-theory litera-

ture called “erasure noise” (Cover & Thomas, 2006), in which a context is transformed

by randomly erasing words with some probability e. Erasure noise embodies the assump-

tion that information about words is lost at a constant rate. The noise distribution stands

in for the distribution r ~ M(c) in Eq. 3.

The noise distribution is the major free parameter in lossy-context surprisal theory,

since it can be any stochastic function. For example, the noise distribution could remove

information about words at an adjustable rate that depends on the word, a mechanism

which could be used to model salience effects in memory. We will not explore such noise

distributions in this work, but they may be necessary to capture more fine-grained empiri-

cal phenomena. Instead, we will focus on simple noise distributions.

As with other noisy-channel models in cognitive science, the noise distribution is a

major degree of freedom, but it does not make the model infinitely flexible. One con-

straint on the noise distribution, which follows from Claim 1 above, is that the infor-

mation contained in a memory representation for a word must either remain constant

or degrade over time. Each time a memory representation of a word is updated, the

information in that representation can be either retained or lost. Therefore, as time

goes on, information about some past stimulus can either be preserved or lost, but

cannot increase—unless it comes in again via some other stimulus. This principle is

known as the Data Processing Inequality in information theory: It is impossible for a

representation to contain more information about a random variable than is contained

in the random variable itself (Cover & Thomas, 2006). Thus, the noise distribution is

not unconstrained; for example, it is not possible to construct a noise distribution

where the memory representation of a word becomes more and more accurate the

longer the word is in memory, unless the intervening words are informative about the

original word.
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3.3. Calculation of the probability of a word given a memory representation

The question arises of how to calculate the probability of a word given a lossy mem-

ory representation. We assumed the existence in Claim 2 of a probability model L that

predicts the next word given the true context c, but we do not yet have a way to calculate

the probability of the next word given the memory representation r. It turns out that the

problem of predicting a word given a noisy memory representation is equivalent to the

problem of noisy-channel inference (Gibson, Bergen, & Piantadosi, 2013; Shannon,

1948), with memory treated as a noisy channel.

We can derive the probability of the next word given a memory representation using the

laws of probability theory. Given the probability model in Fig. 2b, we solve for the probabil-

ity pðwiÞ by marginalizing out the possible contexts c that could have given rise to r:

pðwijrÞ ¼ Ec pLðwijcÞ½ � ð4Þ

¼
X

c

pðcÞpLðwijcÞ: ð5Þ

Eq. 5 expresses a sum over all possible contexts c. This mathematical procedure can be

interpreted in the following way: To predict the next word wi given a memory representa-

tion r, we first infer a hypothetical context c from r, then use c to predict wi. The distri-

bution of likely context values given a memory representation r is represented by c|r in

Eq. 4. Supposing we know the memory encoding function M, which is equivalent to a

conditional distribution r|c, we can find the inverse distribution c|r using Bayes’ rule:

pðcÞ ¼ pMðrjcÞpðcÞ
pðrÞ : ð6Þ

Now to get the probability of the next word, we substitute Eq. 6 into Eq. 5:

pðwiÞ
/

X

c

pMðrjcÞpðcÞpLðwijcÞ: ð7Þ

And recalling that a context c consists of a sequence of words w1; . . .; wi�1, we have:

pðwiÞ /
X

w1;...;wi�1

pMðrjw1; . . .; wi�1ÞpLðw1; . . .; wi�1ÞpLðwijw1; . . .; wi�1Þ ð8Þ

¼
X

w1;...;wi�1

pMðrjw1; . . .; wi�1ÞpLðw1; . . .; wiÞ; ð9Þ

where the last step comes from applying the chain rule for conditional probabilities. Eq.

9 expresses the probability for the next word given a memory representation, and does so
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entirely in terms of two model components: (a) the memory encoding function M (from

Claim 1), and (b) and the comprehender’s knowledge L of what words are likely in what

contexts (from Claim 2).

3.4. Interaction of memory and expectations

The model of Eq. 3 is extremely general, yet it is still possible to derive high-level

generalizations from it using information-theoretic principles. In particular, without mak-

ing any further assumptions, we can immediately make two high-level deductions about

the interaction of memory and expectations in lossy-context surprisal theory, both of

which line up with previous results in the field and derive principles which were previ-

ously introduced as stipulations.

3.4.1. Less probable contexts yield less accurate predictions
Our theory predicts very generally that comprehenders will make less accurate predic-

tions from less probable contexts, as compared with more probable contexts. Equiva-

lently, comprehenders in lossy-context surprisal theory are less able to use information

from low-frequency contexts as compared to high-frequency contexts when predicting fol-

lowing words. The resulting inaccuracy in prediction manifests as increased difficulty,

because the inaccuracy usually decreases the probability of the correct following word.

The intuitive reasoning for this deduction is the following. When information about a

true context is obscured by noise in memory, the comprehender must make predictions

by filling in the missing information, following the logic of noisy channel inference as

outlined in Section 3.3. When she reconstructs this missing information, she draws in part

on her prior expectations about what contexts are likely a priori. The a priori probability
of a context has an influence that is instantiated mathematically by the factor

pLðw1; . . .; wi�1Þ in Eq. 8. Therefore, when a more probable context is affected by noise,

the comprehender is likely to reconstruct it accurately, since it has higher prior probabil-

ity; when a less probable context is affected by noise, the comprehender is less likely to

reconstruct it accurately, and more likely to substitute a more probable context in its

place.

We make this argument formally in Supplementary Material A. We introduce the term

memory distortion to define the extent to which the predicted processing difficulty based

on lossy memory representations divergences from the predicted difficulty based on per-

fect memory representations. We show that memory distortion is upper bounded by the

surprisal of the context; that is, less probable contexts are liable to cause more prediction

error and, thus, difficulty and reading time slowdown.

We will demonstrate how this principle can explain structural forgetting effects in Sec-

tion 4, where we will instantiate it via a concrete noise model to get numerical predictions.

The principle that less probable structures are decoded less accurately from memory

has been proposed previously in the context of structural forgetting by Vasishth et al.

(2010), who conjecture that comprehenders can maintain predictions based on

high-frequency structures more easily than low-frequency structures, as a kind of skill.
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The effect arises in our model endogenously as a logical consequence of the lossiness of

memory representations.

3.4.2. Lossy memory makes comprehenders regress to prior expectations
In lossy-context surprisal, the lossiness of memory representations will usually have

the effect of making the difficulty of a word in context more similar to the difficulty that

would be expected for the word regardless of contexts, based on its prior unigram proba-

bility. In other words, as a comprehender’s memory representations are affected by more

and more noise, the comprehender’s expectations regress more and more to their prior

expectations. As we will see, this is the mechanism by which probabilistic expectations

interact with memory effects to produce language-dependent structural forgetting effects,

elaborated in Section 4 below.

To see that our model predicts this behavior, consider the extreme case where all infor-

mation about a context is lost: Then the difficulty of comprehending a word is given

exactly by its log prior probability out of context (the unigram probability). On the other

extreme, when no information is lost, the difficulty of comprehending a word is the same

as under surprisal theory. When an intermediate amount of information is lost, the pre-

dicted difficulty will be somewhere between these two extremes on average.

We deduce this conclusion formally from the claims of lossy-context surprisal theory

in Supplementary Material A, where we show that the result holds on average over

words, for all contexts and arbitrary memory models. Because this result holds on aver-

age over words, it will not hold necessarily for every single specific word given a con-

text. Thus, it is more likely to be borne out in broad-coverage studies of naturalistic text,

where predictions are evaluated on average over many words and contexts, rather than in

specific experimental items.

In fact, an effect along these lines is well-known from the literature examining reading

time corpora. In that literature there is evidence for word frequency effects in reading

time above and beyond surprisal effects (Demberg & Keller, 2008a; Rayner, 1998) (cf.

Shain, 2019). We have deduced that the predicted difficulty of a word in context in

lossy-context surprisal theory is on average somewhere between the prediction from sur-

prisal theory and the prediction from log unigram frequency. If that is the case, then

observed difficulty would be well-modeled by a linear combination of log frequency and

log probability in context, the usual form of regressions on reading times (e.g., Demberg

& Keller, 2008a).

Further work has shown a robust effect of bigram surprisal beyond the predictions of

surprisal models taking larger amounts of context into account (Demberg & Keller,

2008a; Fossum & Levy, 2012; Goodkind & Bicknell, 2018a; Mitchell, Lapata, Demberg,

& Keller, 2010): these results are to be expected if distant context items are subject to

more noise than local context items (an assumption which we will make concrete in Sec-

tion 5). More generally, a wealth of psycholinguistic evidence has suggested that local

contextual information plays a privileged role in language comprehension (Kamide &

Kukona, 2018; Tabor, Galantucci, & Richardson, 2004). We leave it to future work to
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investigate whether these more complex local context effects can be modeled using

lossy-context surprisal.

3.5. Remarks

3.5.1. Surprisal theory is a special case of lossy-context surprisal
Plain surprisal theory can be seen as a special case of lossy-context surprisal where the

memory encoding function M gives a lossless representation of context, for example by

returning a distribution with probability mass 1 on the true context and 0 on other con-

texts. We will see in Section 5 that the dependency locality theory is another special case

of lossy-context surprisal, for particular values of L and M.

3.5.2. Representation agnosticism
One major advantage of surprisal theory, which is only partially maintained in lossy-

context surprisal, is that it has a high degree of representation agnosticism. It does not

depend on any theory about what linguistic or conceptual structures are being inferred by

the listener.

Lossy-context surprisal maintains agnosticism about what structures are being inferred

by the listener, but it forces us to make (high-level) assumptions about how context is
represented in memory, in terms of what information is preserved and lost. These

assumptions go into the theory in the form of the noise distribution. While a full, broad-

coverage implementation of lossy-context surprisal may incorporate detailed syntactic

structures in the noise distribution, in the current paper we aim to maintain representation

agnosticism in spirit by using only highly general noise models that embody gross infor-

mation-theoretic properties without making claims about the organization of linguistic

memory.

We emphasize this remark because, as we develop concrete instantiations of the theory

in sections below, we will be talking about linguistic knowledge and the contents of

memory primarily in terms of rules and individual words. But words and rules are not

essential features of the theory: We consider them to be merely convenient concepts for

building interpretable models. In particular, the comprehender’s linguistic knowledge L
may contain rich information about probabilities of multi-word sequences (Arnon &

Christiansen, 2017; Reali & Christiansen, 2007), context-dependent pragmatics, graded

word similarities, etc.

3.5.3. Comparison with previous noisy-channel theories of language understanding
Previous work has provided evidence that language understanding involves noisy-chan-

nel reasoning: Listeners assume that the input they receive may contain errors, and

they try to correct those errors when interpreting that input (Gibson et al., 2013; Poppels

& Levy, 2016). For example, in Gibson et al. (2013), experimental participants inter-

preted an implausible sentence such as The mother gave the candle the daughter as if it

were The mother gave the candle to the daughter. That is, they assumed that a word had
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been deleted from the received sentence, making the received sentence noisy, and then

decoded the likely intended sentence that gave rise to the received sentence. The current

work is similar to this previous work in that it posits a noisy-channel decoding process as

part of language comprehension; it differs in that it treats memory for context as a noisy

channel, rather than treating the whole received utterance as a noisy channel.

3.5.4. Comparison with previous noisy-channel surprisal theories
Lossy-context surprisal is notably similar to the noisy channel surprisal theory

advanced by Levy (2008b, 2011). Both theories posit that comprehenders make predic-

tions using a noisy representation of context. Lossy-context surprisal differs in that it is

only the context that is noisy: Comprehenders are predicting the true current word given

a noisy memory representation. In Levy (2011), in contrast, comprehenders are predicting

a noisy representation of the current word given a noisy representation of the context.

We believe that the distinction between these models reflects two sources of noise that

affect language processing.

A key difference between the current work and the model in Levy (2011) is the char-

acter of the noise model investigated. Levy (2011) most clearly captures perceptual
uncertainty: A reader may misread certain words, miss words, or think that certain words

are present that are not really there. This view justifies the idea of noise applying to both

the current word and previous words. Here, in contrast, we focus on noise affecting mem-

ory representations, which applies to the context but not to the current word. Crucially, it

is natural to assume for noise due to memory that the noise level is distance-sensitive,

such that context words which are further from the current word are represented with

lower fidelity. This assumption gives us a novel derivation for predicting locality effects

in Section 5.

3.5.5. Relation with n-gram surprisal
A common practice in psycholinguistics is to calculate surprisal values using n-gram

models, which only consider the previous n � 1 words in calculating the probability of

the next word (van Schijndel & Schuler, 2016; Smith & Levy, 2013). Recent work has

found effects of n-gram surprisal above and beyond surprisal values calculated from lan-

guage models that use the full previous context (Demberg & Keller, 2008a; Fossum &

Levy, 2012; Goodkind & Bicknell, 2018a; Mitchell et al., 2010). Plain surprisal theory

requires conditioning on the full previous context; using an n-gram model gives an

approximation to the true surprisal. The n-gram surprisal can be seen as a form of lossy-

context surprisal where the noise distribution is a function which takes a context and

deterministically returns only the last n � 1 words of it.

3.5.6. Relation with recurrent neural networks
Recent work has proposed to use surprisal values calculated from recurrent neural net-

works (RNNs) (Elman, 1990) in order to predict by-word reading times (Frank & Bod,

2011; Frank et al., 2016; Goodkind & Bicknell, 2018b). When an RNN is used to gener-

ate surprisal values, the resulting sentence processing model can be seen as a special case
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of lossy-context surprisal where the lossy memory representation is the RNN’s incremen-

tal state, and where the noise distribution produces this memory representation determin-

istically. For this reason we do not view our model and the results presented in Section 4

to be in opposition to neural network models of the same phenomena. Rather, lossy-con-

text surprisal helps us explain why the neural networks behave as they do. In particular,

the principles which we derived above about the interaction of memory and expectations

will apply to RNN surprisal values, just as they apply to any model where words are pre-

dicted from lossy-context representations in a rational manner.

There is also deeper connection between lossy-context surprisal and the operation of

RNNs. Lossy-context surprisal describes processing cost in any incremental predictive

sequence processing model where the representation of context is lossy and where pro-

cessing is maximally efficient (Smith & Levy, 2013). Inasmuch as RNNs fulfill this

description, lossy-context surprisal can provide a high-level model of how much compu-

tational effort they expend per integration. RNNs as currently applied do not typically

fulfill the assumption of maximal efficiency, in that each integration takes a constant

time, but even then lossy-context surprisal provides a description of how much non-re-

dundant work is being done in each application of the integration function.

A notable exception to the claim that RNNs perform integrations in constant time is

the Adaptive Computation Time network of Graves (2016). In this architecture, when a

word is being integrated with a memory representation, the integration function may be

applied multiple times, and the network decides before processing a word how many

times the integration function will be applied. This can be seen as an implementation of

the theory of optimal processing time described in Smith and Levy (2013). Thus, Adap-

tive Computation Time networks appear to be a straightforward practical implementation

of the reasoning behind surprisal theory, and their processing time should be well-de-

scribed by lossy-context surprisal.

3.5.7. Relation with the now-or-never bottleneck
In an influential recent proposal, Christiansen and Chater (2016) have argued that lan-

guage processing and language structure are critically shaped by a now-or-never bottle-
neck: the idea that, at each timestep, the language processor must immediately extract as

much information from the linguistic signal as it can, and that afterwards the processor

only has access to lossy memory representations of preceding parts of the signal. We see

lossy-context surprisal as a particular instantiation of this principle, because lossy-context

surprisal is based on the idea that the comprehender has perfect information about the

current word but only noisy information about the previous words. On top of this, lossy-

context surprisal contributes the postulate that the amount of work done at each timestep

is determined by surprisal.

3.5.8. Relation with Good-Enough processing
The idea of “Good-Enough” processing (Ferreira & Lowder, 2016) is that the norm for

linguistic comprehension and production is a kind of “shallow processing” (Sanford &

Sturt, 2002) where computational operations are performed to the lowest adequate level
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of precision. The good-enough principle manifests in lossy-context surprisal in the mem-

ory encoding function, which does not store complete information about the context. A

more complete analogy with Good-Enough processing could be made for memory encod-

ing functions which adaptively decide how much information to store about context

depending on expected utility, storing as little information as possible for the desired

level of utility. We discuss such adaptive noise models further in Section 6.1.

3.5.9. Relation with language production
A recent body of work has argued that language production and language comprehen-

sion—inasmuch as it relates to prediction—use the same computational system (Pickering

& Garrod, 2013). In our model, linguistic prediction is embodied by the probability distri-

bution L. Lossy-context surprisal is agnostic as to whether L is instantiated using the same

computational system used for production, but we note that it would be inefficient if the

information stored in L was duplicated elsewhere in a separate system for production.

3.5.10. Digging-in effects
A well-known class of phenomena in sentence processing is digging-in effects (Tabor

& Hutchins, 2004), in which processing of garden path sentences becomes harder as the

length of the locally ambiguous region of a sentence is increased. One surprisal-compati-

ble account of digging-in effects is given by Levy, Reali, and Griffiths (2009), who posit

that the relevant working memory representation is a particle-filter approximation to a

complete memory representation of a parse forest. On this theory, human comprehension

mechanisms stochastically resample incremental syntactic analyses consistent with every

new incoming word. The longer a locally ambiguous region, the higher the variance of

the distribution over syntactic analyses, and the higher the probability of losing the ulti-

mately correct analysis, leading to higher expected surprisal upon garden-path disam-

biguation. This model is a special case of lossy-context surprisal where the memory

encoding function M represents structural ambiguity of the context (explicitly or implic-

itly) and performs this particle filter approximation.

4. Structural forgetting

One of the most puzzling sentence processing phenomena involving both memory and

expectations is structural forgetting. Structural forgetting consists of cases where compre-

henders appear to forget or misremember the beginning of a sentence by the time they get to

the end of the sentence. The result is that ungrammatical sentences can appear more accept-

able and easier to understand than grammatical sentences, a kind of phenomenon called a

grammaticality illusion (Vasishth et al., 2010). For example, consider the sentences below.

(3) a. The apartment1 that the maid2 who the cleaning service3 sent over3 was well-decorated1.

b. The apartment1 that the maid2 who the cleaning service3 sent over3 cleaned2 was well-decorated1.
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In acceptability judgments, English speakers reliably rate Sentence (3a) to be at least

equally acceptable as, and sometimes more acceptable than, Sentence (3b) (Frazier, 1985;

Gibson & Thomas, 1999). However, Sentence (3a) is ungrammatical whereas Sentence

(3b) is grammatical. To see this, notice that the ungrammatical (3a) has no verb phrase

corresponding to the subject noun phrase the maid. The examples in (3) involve two

levels of self-embedding of relative clauses; no structural forgetting effect is observed in

English for one level of embedding. The effect is usually taken to mean that Sentence

(3a) is easier to process than Sentence (3b), despite Sentence (3a) being ungrammatical.

Gibson and Thomas (1999) proposed a Dependency Locality Theory account of struc-

tural forgetting, in which the memory cost of holding predictions for three verb phrases

is too high, and the parser reacts by pruning away one of the predicted verb phrases. As

a result, one of the predicted verb phrases is forgotten, and comprehenders judge a sen-

tence like (3a) with two verb phrases at the end to be acceptable.

The simple memory-based explanation for these effects became untenable, however,

with the introduction of data from German. It turns out that in German, for materials with

exactly the same structure, the structural forgetting effect does not obtain in reading times

(Vasishth et al., 2010). German materials are shown in the sentences (4); these are word-

for-word translations of the English materials in (3). Vasishth et al. (2010) probed the

structural forgetting effect using reading times for material after the end of the verb

phrases, and Frank and Ernst (2017) have replicated the effect using acceptability judg-

ments (but see Bader, 2016; H€aussler & Bader, 2015, for complicating evidence).

(4) a. Die Wohnung1, die das Zimmerm€adchen2, das der Reinigungsdienst3 €ubersandte3, war gut
eingerichtet3.

b. Die Wohnung1, die das Zimmerm€adchen2, das der Reinigungsdienst3 €ubersandte3, reinigte2, war gut
eingerichtet3.

If memory resources consumed are solely a function of syntactic structure, as in the

theory of Gibson and Thomas (1999), then there should be no difference between German

and English. Vasishth et al. (2010) argued that listeners’ experience with the probabilistic

distributional pattern of syntactic structures in German—where the structures in Sentences

4a and b are more common—make it easier for listeners to do memory retrieval opera-

tions over those structures. In particular, the high frequency of verb-final structures in

German makes these structures easier to handle.

The idea that memory effects are modulated by probabilistic expectations was further

supported in experiments reported by Frank et al. (2016) showing that native speakers of

Dutch and German do not show the structural forgetting effect when reading Dutch or

German (Dutch having similar syntactic structures to German, though without case mark-

ing), but they do show the structural forgetting effect when reading English, which is an

L2 for them. The result shows that it is not the case that exposing a comprehender to

many verb-final structures makes him or her more skilled at memory retrieval for these
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structures in general; rather, the comprehender’s experience with distributional statistics

of the particular language being processed influences memory effects for that language.

4.1. Previous modeling work

The existing computational models of this phenomenon are neural network surprisal

models. Christiansen and Chater (2001) and Christiansen and MacDonald (2009) find that

a simple recurrent network (SRN) trained to predict sequences drawn from a toy proba-

bilistic grammar over part-of-speech categories (as in Christiansen & Chater, 1999) gives

higher probability to an ungrammatical sequence NNNVV (three nouns followed by two

verbs) than to a grammatical sequence NNNVVV. Engelmann and Vasishth (2009) show

that SRNs trained on English corpus data reproduce the structural forgetting effect in

English, while SRNs trained on German corpus data do not show the effect in German.

However, they find that the lack of structural forgetting in the German model is due to

differing punctuation practices in English and German orthography, whereas punctuation

was not necessary to reproduce the crosslinguistic difference in Vasishth et al. (2010).

Finally, Frank et al. (2016) show that SRNs trained on both English and Dutch corpora

can reproduce the language-dependent structural forgetting effect qualitatively in the sur-

prisals assigned to the final verb and to a determiner following the final verb.

In the literature, these neural network models are often described as experience-based

and contrasted with memory-based models (Engelmann & Vasishth, 2009; Frank et al.,

2016). It is true that the neural network models do not stipulate explicit cost associated

with memory retrieval. However, recurrent neural networks do implicitly instantiate mem-

ory limitations, because they operate using lossy representations of context. The learned

weights in neural networks contain language-specific distributional information, but the

network architecture implicitly defines language-independent memory limitations.

These neural network models succeed in showing that it is possible for an experience-

based predictive model with memory limitations to produce language-dependent structural

forgetting effects. However, they do not elucidate why and how the effect arises, nor

under what distributional statistics we would expect the effect to arise, nor whether we

would expect it to arise for other, non-neural-network models. Lossy-context surprisal

provides a high-level framework for reasoning about the effect and its causes in terms of

noisy-channel decoding of lossy memory representations.

4.2. Lossy-context surprisal account

The lossy-context surprisal account of structural forgetting is as follows. At the end of

a sentence, we assume that people are predicting the next words given a lossy memory

representation of the beginning of the sentence—critically, the true beginning of the sen-

tence cannot be recovered from this representation with complete certainty. Given that

the true context is uncertain, the comprehender tries to use her memory representation to

infer what the true context was, drawing in part on her knowledge of what structures are

common in the language. When the true context is a rare structure, such as nested verb-fi-

nal relative clauses in English, it is not likely to be inferred correctly, and so the
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comprehender’s predictions going forward are likely to be incorrect. On the other hand, if

the true context is a common structure, such as the same structure in German or Dutch, it

is more likely to be inferred correctly, and predictions are more likely to be accurate.

The informal description above is a direct translation of the math in Eq. 9, Section 3.1.

In order to make it more concrete for the present example, we present results from a toy

grammar study, similar to Christiansen and Chater (2001) and Christiansen and MacDon-

ald (2009). Our model is similar to this previous work in that the probability distribution

which is used to predict the next word is different from the probability distribution that

truly generated the sequences of words. In neural network models, the sequences of

words come from probabilistic grammars or corpora, whereas the predictive distribution

is learned by the neural network. In our models, the sequences of words come from a

grammar which is known to the comprehender, and the predictive distribution is based on

that grammar but differs from it because predictions are made conditional on an imperfect

memory representation of context. Our model differs from neural network models in that

we postulate that the comprehender has knowledge of the true sequence distribution—she

is simply unable to apply it correctly due to noise in memory representations. We there-

fore instantiate a clear distinction between competence and performance.

We will model distributional knowledge of language with a probabilistic grammar

ranging over part-of-speech symbols N (for nouns), V (for verbs), P (for prepositions),

and C (for complementizers). In this context, a sentence with two levels of embedded

RCs, as in Sentence (3b), is represented with the sequence NCNCNVVV. A sentence with

one level of RCs would be NCNVV. Details of the grammar are given in Section 4.3.

Structural forgetting occurs when an ungrammatical sequence ending with a missing

verb (NCNCNVV) ends up with lower processing cost than a grammatical sentence with

the correct number of verbs (NCNCNVVV). Therefore, we will model the processing cost

of two possible continuations given prefixes like NCNCNVV: a third V (the grammatical

continuation) and the end-of-sequence symbol # (the ungrammatical continuation). When

the cost of the ungrammatical end-of-sequence symbol is less than the cost of the gram-

matical final verb, then we will say the model exhibits structural forgetting (Christiansen

& Chater, 2001). The cost relationships are shown below:

D(V|NCNCNVV) > D(#|NCNCNVV) (structural forgetting, embedding depth 2)

D(#|NCNCNVV) > D(V|NCNCNVV) (no structural forgetting, embedding depth 2)

D(V|NCNV) > D(#|NCNV) (structural forgetting, embedding depth 1)

D(#|NCNV) > D(V|NCNV) (no structural forgetting, embedding depth 1)

We aim to show a structural forgetting effect at depth 2 for English, and no structural

forgetting at depth 1 for English, and neither depths 1 nor 2 for German. In all cases, the

probability to find a forgetting effect should increase monotonically with embedding

depth: We should not see a data pattern where structural forgetting happens for shallow

embedding depth but not for a deeper embedding depth. (Our prediction extends to

greater embedding depths as well: see Supplementary Material B.)
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4.3. A toy grammar of the preverbal domain

We define a probabilistic context-free grammar (Booth, 1969; Manning & Sch€utze,
1999) modeling the domain of subject nouns and their postmodifiers before verbs. The

grammar rules are shown in Table 1. Each rule is associated with a production probability

which is defined in terms of free parameters. These parameters are m, representing the

rate at which nouns are postmodified by anything; r, the rate at which a postmodifier is a

relative clause; and f, the rate at which relative clauses are verb-final. We will adjust

these parameters in order to simulate English and German. By defining the distributional

properties of our languages in terms of these variables, we can study the effect of particu-

lar grammatical frequency differences on structural forgetting.2

In figures below, we will model English by setting all parameters to 1
2
except f, which

is set to 0.2, reflecting the fact that about 20% of English relative clauses are object-ex-

tracted, following the empirical corpus frequencies presented in Roland, Dick, and Elman

(2007, their fig. 4). We will model German identically to English except setting f to 1,

indicating the fact that all relative clauses in German, be they subject- or object-extracted,

are verb final. We stress that the only difference between our models of English and Ger-

man is in the grammar of the languages; the memory models are identical. It turns out

that this difference between English and German grammar drives the difference in struc-

tural forgetting across languages: Even with precisely the same memory model across

languages, and precisely the same numerical value for all the other grammar parameters,

our lossy-context surprisal model predicts that a language with verb-final relative clause

rate f = 1 will show no structural forgetting at embedding depth 2, and a grammar with

f = 0.2 will show it, thus matching the crosslinguistic data.

4.4. Noise distribution

In order to fully specify the lossy-context surprisal model, we need to state how the

true context is transformed into a noisy memory representation. For this section we do

this by applying deletion noise to the true context. Deletion noise means we treat the con-

text as a sequence of symbols, where each symbol is deleted with some probability d,

Table 1

Toy grammar used to demonstrate verb forgetting

Rule Probability

S ? NP V 1

NP ? N 1 � m
NP ? N RC mr
NP ? N PP m(1 � r)
PP ? P NP 1

RC ? C NP V f
RC ? C V NP 1 � f

Note: Nouns are postmodified with probability m; a postmodifier is a relative clause with probability r,
and a relative clause is V-final with probability f.
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called the deletion rate. Some possible noisy memory representations arising from the

context NCNCNVV under deletion noise are shown in Table 2. For example, in Table 2,

the second row represents a case where one symbol was deleted and six were not deleted;

this happens with probability d1ð1� dÞ6.
Deletion noise introduces a new free parameter d into the model. In general, the dele-

tion rate d can be thought of as a measure of representation fidelity; deletion rate d = 0

is a case where the context is always veridically represented, and deletion rate d = 1 is a

case where no information about the context is available. If d = 0, then the first row

(containing the full true prefix) has probability 1 and all the others have probability 0; if

d = 1, then the final row (containing no information at all) has probability 1 and the rest

have probability 0. We explore the effects of a range of possible values of d in Sec-

tion 4.5.

The language-dependent pattern of structural forgetting will arise in our model as a

specific instance of the generalization that comprehenders using lossy memory representa-

tions will make more accurate predictions from contexts that are higher probability, and

less accurate predictions from contexts that are lower probability. This fact can be

derived in the lossy-context surprisal model regardless of the choice of noise distribution

(see Supplementary Material A); however, to make numerical predictions, we need a con-

crete noise model. Below we describe how the language-dependent pattern of structural

forgetting arises given the specific deletion noise model used in this section.

Given the true context [NCNCNVV] and a noisy representation such as [NCV], the

comprehender will attempt to predict the next symbol based on her guesses as to the true

context that gave rise to the representation [NCV]. That is, the comprehender treats

[NCV] as a representation of context that has been run through a noisy channel and

attempts to decode the true context. Given [NCV], the possible true contexts are any con-

texts such that a series of deletions could result in [NCV]. For example, a possible true

context is [NPNCV], which gives rise to [NCV] with probability 2d2ð1� dÞ3 (two dele-

tions and three non-deletions).

Now when predicting the next symbol, according to Bayes’ rule, the hypothetical con-

text [NPNCV]—which predicts only one more following verb—would be given weight

2d2ð1� dÞ3pLðNPNCVÞ, where pL NPNCVð Þ is the probability of the sequence [NPNCV]
the grammar. Hypothetical contexts with higher probability under the grammar will have

more weight, and these probabilities differ across languages. For example, if the grammar

Table 2

A sample of possible noisy context representations and their probabilities as a result of applying deletion

noise to the prefix NCNCNVV. Many more are possible

Noisy Context Probability

[NCNCNVV] (1 � d)7

[CNCNVV] d1(1 � d)6

[NCCVV] d2(1 � d)5

[NCV] 2d2(1 � d)3

[] d7
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disallows verb-initial relative clauses (i.e., f = 1), then pL(NPNCV) = 0; so this hypotheti-

cal context will not make any contribution toward predicting the next words. On the other

hand, if verb-initial relative clauses are very common in the language (i.e.,f � 0), then

this hypothetical context will be influential, and might result in the prediction that the

sentence should conclude with only one more verb.

In this way, different linguistic distributions give rise to different predictions under the

noisy memory model. Below, we will see that this mechanism can account for the lan-

guage dependence in the structural forgetting effect.

4.5. Conditions for verb forgetting

At embedding depth 2, given the default parameter values described in Section 4.3, we

find lossy-context surprisal values which reproduce the language-dependent structural for-

getting effect in reading times shown in Vasishth et al. (2010). Fig. 3a shows the differ-

ence in predicted processing cost from the ungrammatical to the grammatical

continuation. When this difference (ungrammatical � grammatical) is positive, then the

ungrammatical continuation is more costly, and there is no structural forgetting. When

the difference is negative, then the ungrammatical continuation is less costly and there is

structural forgetting. The figure shows that we predict a structural forgetting effect for

English but not for German, based on the grammar parameters. Fig. 3b compares the pre-

dicted processing costs with reading time differences from the immediate postverbal

region for English and German from Vasishth et al. (2010). We reproduce the language-

dependent crossover in structural forgetting.

The results above show that it is possible to reproduce language dependence in struc-

tural forgetting for certain parameter values, but they do not speak to the generality of

the result nor to the effect of each of the parameters. To explore this matter, we partition

the model’s four-dimensional parameter space into regions distinguishing whether lossy-

context surprisal is lower for (G) grammatical continuations or (U) ungrammatical contin-

uations for (a) singly embedded NCNV and (b) doubly embedded NCNCNVV contexts.

Fig. 4 shows this partition for a range of r, f, m, and d.
In the blue region of Fig. 4, grammatical continuations are lower-cost than ungrammat-

ical continuations for both singly and doubly embedded contexts, as in German (G1G2);

in the red region, the ungrammatical continuation is lower cost for both contexts (U1U2).

In the green region, the grammatical continuation is lower cost for single embedding, but

higher cost for double embedding, as in English (G1U2).

The results of Fig. 4 are in line with broad patterns reported in the literature. We find

that no combination of parameter values ever instantiates U1G2 (for either the depicted or

other possible values of m and d). Furthermore, each language’s statistics place it in a

region of parameter space plausibly corresponding to its behavioral pattern: The English-

type forgetting effect is predicted mostly for languages with low f, a fair description of

English according to the empirical statistics published in Roland et al. (2007); in Fig. 4

we see that the region around f = 0.2 will have structural forgetting across a wide range

of other parameter values. The German-type forgetting pattern is predicted for languages
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with high f, and at f = 1 the structural forgetting pattern only obtains only for extremely

low values of r (the overall relative clause rate) and high values of d (the forgetting rate).

Therefore, the model robustly predicts a lack of structural forgetting for languages with

f = 1, which matches standard descriptions of German grammar.

The basic generalization visible in Fig. 4 is that structural forgetting becomes more

likely as the relevant contexts become less probable in the language. Thus, decreasing the

postnominal modification rate m, the relative clause rate r, and the verb-final relative

clause rate f all cause an increase in the probability of structural forgetting for verb-final

relative clauses. The probability of forgetting also increases as the noise rate d increases,

indicating more forgetting when memory representations provide less evidence about the

true context.

Thus, lossy-context surprisal reproduces the language-dependent structural forgetting

effect in a highly general and perspicuous way. The key difference between English and

German is identified as the higher verb-final relative clause rate (f) in German; this differ-

ence in grammar creates a difference in statistical distribution of strings which results in

more accurate predictions from lossy contexts. The mechanism that leads to the differ-

ence in structural forgetting patterns is that linguistic priors affect the way in which a

comprehender decodes a lossy memory representation in order to make predictions.
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Fig. 3. (a) Lossy-context surprisal differences for simulated English (f = 0.2) and German (f = 1), with dele-

tion probability d = 0.2 and all other parameters set to 1
2
, for final verbs in structural forgetting sentences.

The value shown is the surprisal of the ungrammatical continuation minus the surprisal of the grammatical

continuation. A positive difference indicates that the grammatical continuation is less costly; a negative dif-

ference indicates a structural forgetting effect. (b) Reading time differences in the immediate postverbal

region for grammatical and ungrammatical continuations; data from Vasishth et al. (2010).
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4.6. Discussion

We have shown that lossy-context surprisal provides an explanation for the interaction

of probabilistic expectations and working memory constraints in the case of structural for-

getting.

Our model is formulated over a toy grammar over part-of-speech categories for ease of

implementation and reasoning. We do not wish to claim that a lossy-context surprisal

account of structural forgetting requires part-of-speech information or that the noise

model has to delete whole words at a time. Rather, the model is meant to illustrate the

highly general point that, in a lossy-context surprisal setting, contexts which are more

probable in a language are more likely to produce correct predictions going forward. This

is how language statistics interact with memory constraints to create language dependence

in structural forgetting.

Fig. 4. Regions of different model behavior regarding structural forgetting in terms of the free parameters d
(noise rate), m (postnominal modification rate), r (relative clause rate), and f (verb-final relative clause rate).

= U1U2, = G1U2 (like English), = G1G2 (like German; see text).
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An interesting aspect of these models is that the memory representation of the key con-

text across languages is exactly the same. The difference in model behavior arises

because evidence from these noisy memory representations is combined with prior knowl-

edge about the language to form expectations. It would be theoretically possible to create

a lossy-context surprisal implementation where the form of representation is language-de-

pendent and itself directly dependent on language statistics, as discussed further in Sec-

tion 6.1. However, it turns out this mechanism is not necessary to explain language-

dependent structural forgetting.

Our view of structural forgetting makes some new predictions about the phenomenon.

For example, if comprehenders adapt quickly to distributional statistics, then it may be

possible to quickly train them to expect more verb-final relative clauses. If the lossy-con-

text surprisal account of this effect is correct, then we expect that this training would

reduce the structural forgetting effect in these comprehenders. Another prediction is that

at higher embedding depths, even German should begin to show structural forgetting

effects, because higher embedding depths create lower-probability contexts which are

harder to make predictions from. Model predictions for deeper embedding levels are

given in Supplementary Material B.

One consistent result from the structural forgetting literature is that the verb that can

be most easily dropped is the middle one. That is, for a sentence N3N2N1V1V2V3, the

most acceptable ungrammatical variant is N3N2N1V1V3. The particular implementation of

model in this section does not provide an explanation for this phenomenon, but we

believe some simple extensions could. In the implementation above, we assumed that

words from the true context are missing in the memory representation with constant prob-

ability d. If this were modified so that the deletion probability increases the longer a word

representation exists in memory—a natural consequence of incremental processing—then

the model would instantiate a recency effect, capturing the fact that V1 is rarely forgotten.

To capture the fact that V3 is rarely forgotten, there are a few options. One would be to

allow the model to represent a primacy effect (H€aussler & Bader, 2015); that is, the dele-

tion probability for a word early in a sequence would increase at a slower rate than dele-

tion probabilities for other words, such that words early in a sequence are remembered

more accurately than words in the middle of a sequence. Another option, which we

believe is more promising, would be to implement a subject advantage in memory in this

framework, by postulating that matrix subjects are generally deleted with less probability

than other words and phrases. Either a subject advantage or a primacy effect would pre-

dict the right forgetting pattern. For more discussion of extended noise models along

these lines, see Section 6.1.

In this section we have shown how lossy-context surprisal accounts for a striking inter-

action of expectation-based and memory-based phenomena. We believe this model pro-

vides an explanatory framework for understanding both human sentence processing and

also the behavior of broader-coverage black-box models such as RNNs. Next, we will

show how the same model can account for a classic memory-based effect: dependency

locality effects.
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5. Deriving dependency locality from lossy-context surprisal

A classic finding in psycholinguistics is that sentence processing difficulty increases

when words linked in a syntactic dependency are distant in linear order. The effect is

usually attributed to memory constraints; upon processing the second word in a syntactic

dependency, it is necessary to retrieve a representation of the first word from working

memory, and this retrieval may be difficult or inaccurate, with increasing difficulty or

inaccuracy the longer the representation has been in memory (Gibson, 1998, 2000; Lewis

& Vasishth, 2005; Vasishth, Chopin, Ryder, & Nicenboim, 2017).

In this section we aim to show how dependency locality effects emerge as a natural

consequence of lossy-context surprisal theory. This means that under appropriate condi-

tions, lossy-context surprisal can recover the predictions of the dependency locality theory

(Gibson, 1998, 2000). However, we make predictions beyond previous theories because

dependency locality effects emerge under lossy-context surprisal as a subset of a more

general, novel principle: information locality. Information locality holds that there will be

relative processing difficulty when any linguistic elements which predict each other are

far from each other.

Below, we show how to derive information locality as a first-order approximation to

the full predictions of lossy-context surprisal theory (Section 5.1). Next, we give evidence

that dependency locality effects can be seen as a subset of information locality effects

(Section 5.2). Finally, we outline the novel predictions of information locality and survey

evidence for information locality from corpus studies (Section 5.3).

5.1. Information locality from lossy-context surprisal

In this section we will give a high-level description of the means by which lossy-con-

text surprisal theory gives rise to information locality: the principle that processing diffi-

culty should occur when words that predict each other are far from each other. A full

formal derivation is found in Futrell and Levy (2017) and Supplementary Material C.

5.1.1. Sketch of the idea
We wish to know how we could model the processing difficulty at the word out in a

sentence like 5b below in a lossy-context surprisal framework:

5. a. Bob threw out the old trash that had been sitting in the kitchen for several days.

b. Bob threw the old trash that had been sitting in the kitchen for several days out.

In order to do this, we will have to assume that the memory representation of a word

is affected by noise with increasing probability the longer the representation has been in

memory. We call this kind of noise distribution a progressive noise distribution because

the noise rate increases progressively with distance; it is illustrated in Fig. 5. A progres-

sive noise distribution could result from decay of representations over time or the
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accumulation of similarity-based interference in representations; the only assumption we

make regarding noise in memory representations is that the effective noise rate increases

monotonically the longer a word representation has been in memory. This assumption

captures the idea that we remember gists of contexts, but rapidly lose memory of specific

wordforms with time (Lombardi & Potter, 1992; Potter & Lombardi, 1990).

Now given a progressive noise distribution, we consider the processing difficulty at

the word out in sentences like (5). When the word threw is close to the word out, as
in (5a), it is likely to be represented accurately in memory and thus will be available

in order to make the word out less surprising, lowering its surprisal cost. On the other

hand, when the word threw is far away from out, as in (5b), it is less likely to be rep-

resented accurately in memory; in that case the comprehender will try to guess what

the now-forgotten context word was, and might guess something like removed or dis-
posed of which would not predict out as the next word. In that case, the surprisal cost

of out would increase.

This is the basic means by which dependency locality effects emerge in lossy-context

surprisal: When a word is far away from a word that it is linked to in a syntactic depen-

dency, then when it is time to process the second word, the first word is less likely to be

available in memory, and thus will fail to reduce the surprisal cost at the second word.

Depending on the remainder of the context, the surprisal cost of the second word might

even increase. Note that this story applies not only to words in syntactic dependencies,

but to all groups of words that systematically covary and thus, predict each other.

Below, we will formalize the intuition developed in this section using concepts from

information theory.

5.1.2. Decomposing surprisal
In order to make the argument clear, we will first introduce some information-theoretic

notions in the context of plain surprisal theory. To recap, surprisal theory holds that the

processing cost associated with a word wi in context w1; . . .; wi�1 is proportional to its

surprisal given the context, which we write below as hðwijw1; . . .; wi�1Þ:

Fig. 5. The prediction problem embodied by lossy-context surprisal with a progressive noise distribution for

the example sentence. The star indicates that the lossy memory representation is observed.
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Dsurprisalðwijw1; . . .; wi�1Þ / � log pðwijw1; . . .; wi�1Þ
� hðwijw1; . . .; wi�1Þ:

Technically, hðwijw1; . . .; wi�1Þ is a conditional surprisal, because it is based on a condi-

tional probability. Conditional surprisal can be thought of as measuring the information
content of a word in context; that is, it measures the length in bits of an efficient binary

representation of the word in context.

Our goal now is to understand the quantity Dsurprisal in terms of two parts: the inherent

information contained in a word, and the modulation of that amount of information by

context. We do this by rewriting it with two terms. Mathematically, it is possible to

decompose any conditional surprisal hðXÞ into two terms: an unconditional surprisal
hðXÞ � log 1

pðXÞ minus a term called pointwise mutual information pmiðX; YÞ � log
pðXÞ
pðXÞ:

hðXÞ ¼ hðXÞ � pmiðX; YÞ:

Pointwise mutual information is the extent to which knowing the value Y lowers the sur-

prisal of the value X. It is a correction term that changes the unconditional surprisal h(X)
into the conditional surprisal hðXÞ. It is also called coding gain in related literature

(Agres et al., 2018).

Viewing surprisal as information content, pointwise mutual information can be thought

of as measuring the number of shared bits between two representations. For example, if

you know that pmiðX; YÞ ¼ 3, then that means that when you learn Y, you can already

guess the value of 3 of the bits in the representation of X. Applying this decomposition

to surprisal cost, we get:

Dsurprisalðwijw1; . . .; wi�1Þ / hðwiÞ � pmiðwi;w1; . . .; wi�1Þ: ð10Þ
The relation of conditional surprisal, unconditional surprisal, and pointwise mutual

information is shown in Fig. 6. Pointwise mutual information is subtracted from the

unconditional surprisal to yield the conditional surprisal.3

Fig. 6. Relation of conditional surprisal hðwijw1; . . .; wi�1Þ, unconditional surprisal h(wi), and pointwise

mutual information pmiðwi; w1; . . .; wi�1Þ.
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5.1.3. The effect of noise
When we move to lossy-context surprisal, where we are predicting the next word wi

given a noisy memory representation, the picture in Fig. 6 changes. On average, the noisy

memory representation can only contain a subset of the information in the true context—
it certainly could not contain more information than the true context. Furthermore, as a

context representation is affected by more and more noise, that context representation can

contain less and less about the next word. We will make this idea concrete by considering

a particular kind of noise model.

In order to capture the intuition that an increasing noise rate affecting a representation

means that there is less information available in that representation, we use erasure noise
as a concrete model. Erasure noise is a common noise model used in information theory,

where it can be a simple stand-in for more complex underlying processes (Cover & Tho-

mas, 2006). In erasure noise, an element of a sequence is probabilistically erased with

some probability e. When an element is erased, it is replaced with an erasure symbol E.
Erasure noise means that the comprehender knows some word was present in a position,

but has forgotten what the word was.4

Furthermore, given that we want to have a progressive noise distribution, we will

assume that the rate at which a word is erased increases the farther back a word is in

time. Suppose we are predicting word wi based on a memory representation of the con-

text w1; . . .; wi�1. In that case, we assume that the erasure probability for a context word

wi�d, which is d words back from wi, is ed, where ed increases monotonically with d (so

edþ1 � ed for all d). That is, the farther back a word is in context, the less information

about the wordform is available. Some examples are shown in Table 3, which demon-

strates possible noisy representations of the context Bob threw the trash and their proba-

bilities.

Erasure noise has the effect of reducing the effective pointwise mutual information. If

values X and Y have pointwise mutual information pmiðX; YÞ, and a third variable R is

produced by erasing Y with probability e, then the expected pointwise mutual information

between X and R is pmiðX; RÞ ¼ ð1� eÞpmiðX; YÞ. Erasure noise causes pointwise

mutual information to decrease linearly.

Now that we have defined a concrete progressive noise model, we are ready to show

that lossy-context surprisal under this noise model exhibits information locality.

Table 3

Examples of noisy memory representations after progressive erasure noise, where a d-back word is erased

with monotonically increasing probability ed

Noisy memory Probability

Bob threw the trash (1 � e4)(1 � e3)(1 � e2)(1 � e1)
Bob E the trash (1 � e4)e3(1 � e2)(1 � e1)
Bob threw E trash (1 � e4)(1 � e3)e2(1 � e1)
E threw the E e4(1 � e3)(1 � e2)e1
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5.1.4. Information locality
Under progressive erasure noise, the lossy-context surprisal of word wi in context

w1; . . .; wi�1 can be approximated in terms of the erasure rates and the pmi values

between words as the following:

Dlc surprisalðwijw1; . . .; wi�1Þ � hðwiÞ �
Xi�1

j¼1

ð1� ei�jÞpmiðwi; wjÞ: ð11Þ

See Supplementary Material C for the formal argument. This expression of the cost func-

tion is schematized in Fig. 7 for the case where we are predicting out given the context

Bob threw the trash. The expression is most easily understood in terms of the difference

between the predictions of lossy-context surprisal and plain surprisal. The predicted

excess processing difficulty, on top of the predictions of surprisal theory, is given by:

Dlc surprisalðwijw1; . . .; wi�1Þ � Dsurprisalðwijw1; . . .; wi�1Þ �
Xi�1

j¼1

ei�jpmiðwi; wjÞ: ð12Þ

As words wi and wj become more distant from each other, the value of the erasure proba-

bility ei�j must increase, so the magnitude of Eq. 12 must increase. Therefore, the theory

predicts increased processing difficulty as an increasing function of the distance between

wi and wj in direct proportion to the pointwise mutual information between them.

In order to unpack what these equations mean, let us focus on the influence of the sin-

gle context word threw on the probability of the target word out. Fig. 8a shows the sur-

prisal reduction in out due to the word threw. Now if we consider the case where the

word threw is far away from out, the probability that threw is not erased decreases,

because of the progressive erasure noise. Therefore, the surprisal-reducing effect of threw
is weakened, as shown in Fig. 8b.

Fig. 7. Lossy-context surprisal of out given Bob threw the trash, according to Eq. 11.
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We have derived a notion of pairwise information locality: a prediction that excess

processing difficulty will result whenever any pair of words that predicts each other is far

from each other. This result may seem surprising given that we aim to also capture the

predictions of pure surprisal models, which usually predict antilocality effects. However,

as we will see in Section 5.3, the model still predicts antilocality effects depending on

the nature of the intervening material.

The approximation in Eq. 11 is precise only when all context words wj make indepen-

dent contributions toward predicting the target word wi. When two context words together

make a different prediction than either word separately, then the approximation will break

down. Such a scenario corresponds to the presence of interaction information among

three or more words in a sequence (Bell, 2003); terms would have to be added to Eq. 11

to account for these interactions. However, the effects of these terms would be highly

constrained because they will be highly penalized by noise. The reason these terms would

be highly constrained is that if two words together make a different prediction than either

word separately, then this prediction will only be relevant if neither of the words is

affected by noise, and this is relatively unlikely.

The assumption that context words make independent contributions toward predicting

the target word is necessary for Eq. 11, which expresses pairwise information locality,

where processing cost results when individual word pairs that systematically covary are

far from each other. However, this assumption is not necessary to show information local-

ity in general; see Supplementary Material C for the derivation of the full form of infor-

mation locality, which holds that excess difficulty will result when a word is separated

from any set of context elements that jointly predict it. Pairwise information locality will

(A) (B)

Fig. 8. Lossy-context surprisal of out when the context word threw is (a) close and (b) far, according to Eq. 11.
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be crucial, however, because we will show that it corresponds to dependency locality

effects.

5.2. Relation to dependency locality

We have shown, under certain assumptions about the noise distribution, that lossy-

context surprisal gives rise to information locality: Processing is most efficient when

words that predict each other are close to each other. We have not yet made an explicit

link to dependency locality, the idea that processing inefficiency happens when words

linked in a syntactic dependency are far from each other.

We propose that dependency locality can be seen as a subset of information locality

under a particular linking hypothesis. The linking hypothesis is that those words linked in

a syntactic dependency are also those words which predict each other the most in a sen-

tence, that is, those words which have the highest pointwise mutual information. We call

this the Head-Dependent Mutual Information (HDMI) hypothesis. If it is the case that

syntactically dependent words have the highest pmi, then dependency locality is an

approximation to information locality where only the highest-pmi word pairs are counted.

In some sense, the link between mutual information and syntactic dependency is defini-

tional. Mutual information is a concept from information theory that quantifies the extent

to which two random variables covary systematically. Syntactic dependency, by defini-

tion, identifies words whose covariance is systematically constrained by grammar. Based

on the parallelism of these concepts, we should expect a connection between mutual

information and syntactic dependency.

The HDMI hypothesis has long been assumed, often tacitly, in the literature on compu-

tational linguistics and natural language processing. Pointwise mutual information has

been used in the field of computational linguistics to detect syntactic dependencies (de

Paiva Alves, 1996; Yuret, 1998) and to discover idioms and collocations (Church &

Hanks, 1990). The HDMI hypothesis also follows naturally from some of the probabilistic

generative models that have been assumed in computational linguistics. In particular, it

follows from head-outward generative models (Eisner, 1996, 1997; Klein & Manning,

2004; Wallach, Sutton, & McCallum, 2008), in which the probability of a sentence is the

product of the probabilities of dependents given heads. Therefore, inasmuch as these

models have had success in unsupervised grammar induction, we have evidence for the

HDMI hypothesis.

Empirical evidence for the HDMI hypothesis based on large corpora is provided by

Futrell and Levy (2017) and Futrell, Qian, Gibson, Fedorenko, and Blank (2019), who

also give a formal derivation of the HDMI hypothesis from an information-theoretic inter-

pretation of the postulates of dependency grammar.

Given the theoretical arguments and empirical evidence that words in dependencies

have especially high mutual information, we can see dependency locality theory as an

approximation to information locality where only the mutual information of words in

dependencies is counted.

R. Futrell, E. Gibson, R. P. Levy / Cognitive Science 44 (2020) 35 of 54



5.3. Predictions of information locality

We have given a theoretical argument for how lossy-context surprisal predicts depen-

dency locality effects as a subset of a new, more general principle of information locality.

Here we detail some of the novel predictions of information locality about processing dif-

ficulty and about word order preferences, and give some evidence that information local-

ity shapes the latter beyond dependency locality.

5.3.1. Word order preferences
The dependency locality theory has been used not only as a theory of on-line process-

ing difficulty but also as a theory of word order preferences in grammar and usage under

the theory that speakers prefer to use orders that are easy to produce and comprehend

(Gibson et al., 2019; Hawkins, 1994; Jaeger & Tily, 2011). In this context, it makes the

prediction of dependency length minimization: In grammar and usage, the linear distance

between words linked in syntactic dependencies should be minimized. This theory has

had a great deal of success in explaining typological universals of word order as well as

corpus data (Ferrer-i-Cancho, 2004; Futrell et al., 2015; Gildea & Temperley, 2010; Haw-

kins, 1994, 2004, 2014; Liu, 2008; Park & Levy, 2009; Rajkumar et al., 2016; Tily,

2010). For recent reviews, see Dyer (2017), Liu, Xu, and Liang (2017), and Temperley

and Gildea (2018)

In the context of predicting word order preferences, information locality makes a clear

prediction beyond dependency locality. It predicts that beyond the tendency for words in

syntactic dependencies to be close, all words with high mutual information (which predict

each other) should be close. Furthermore, words with the highest mutual information

should experience a stronger pressure to be close than those with lower mutual informa-

tion. The basic word order prediction is thus that mutual information between words

should be observed to decrease with distance.

The prediction that linguistic units with high mutual information tend to be close has

been borne out in the literature on quantitative linguistics. Li (1989) and Lin and Teg-

mark (2017) have shown that mutual information between orthographic letters in English

text falls off as a power law. However, the relationship between mutual information and

distance has not been investigated crosslinguistically at the level of words rather than

orthographic letters, nor has the relationship among mutual information, distance, and

syntactic dependency.

In order to test the prediction that words with high mutual information are close,

beyond what is explained by dependency length minimization, we quantified mutual

information among word pairs at various distances in 56 languages of the Universal

Dependencies (UD) 2.1 corpus (Nivre et al., 2017). For technical reasons, we are limited

to calculating mutual information based on the joint frequencies of part-of-speech pairs,

rather than wordforms. The reason we use part-of-speech tags is that getting a reliable

estimate of mutual information from observed frequencies of wordforms is statistically

difficult, requiring very large samples to overcome bias (Archer, Park, & Pillow, 2013;

Basharin, 1959; Bentz, Alikaniotis, Cysouw, & Ferrer-i-Cancho, 2017; Futrell et al.,
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2019; Miller, 1955; Paninski, 2003). The mutual information estimation problem is less

severe, however, when we are looking at joint counts over coarser-grained categories,

such that there is not a long tail of one-off forms. Therefore, we quantify mutual informa-

tion over part-of-speech tag pairs in this section. For this reason we also do not include

data from languages that have fewer than 5,000 words in their largest UD corpus.

The results of this study are shown in Fig. 9. Overwhelmingly, we find that words that

are closer have higher mutual information; this is true both for arbitrary word pairs and

for word pairs in syntactic dependencies. The only exception appears to be syntactic

dependencies in Kazakh, which we believe is due to the small size of the corpus (8,851

words), which means the mutual information values suffer high estimation error. We

quantify the relationship between mutual information and distance using the Spearman

correlation coefficient rho, which is negative when mutual information falls off with dis-

tance; as seen in Fig. 9, it is negative for all cases except for head-dependent pairs in

Kazakh and head-dependent pairs in Persian, for which it is zero.

The finding that words that are close have high mutual information is evidence for

information locality in word order preferences, an effect generalizing and going beyond

dependency length minimization.

In addition, the results show that words in syntactic dependencies have consistently

higher mutual information than general word pairs, even when controlling for distance;

this provides further evidence for the HDMI hypothesis of Section 5.2.

5.3.2. On-line processing predictions
Information locality also makes predictions beyond dependency locality in the domain

of on-line processing effects. In particular, it suggests that dependency locality effects

should be moderated by the mutual information of the words involved in the syntactic

dependency. In the information locality view, dependency locality effects happen when a

context word that would have been useful for predicting the next word is forgotten, and

thus the processing time for the next word is longer than it would have been if that con-

text word were close. Thus, dependencies with high pointwise mutual information should

be associated with strong locality effects, while dependencies with low pointwise mutual

information should be associated with null or weak locality effects.

The existing literature touching on this prediction is mixed. In a reading time study,

Husain et al. (2014) finds that when a final verb in a Hindi relative clause is strongly pre-

dicted by some context, then locality effects with respect to that context cannot be found;

but when the context only weakly predicts the final verb, locality effects are observed.

This result appears to contradict the predictions of information locality, although the

effects of the intervening material would need to be taken into account.

On the other hand, Safavi et al. (2016) perform essentially the same experimental

manipulation in Persian, but find no evidence that strong expectations result in an attenu-

ated locality effect. In fact, they find in an offline sentence completion study that with

increased distance before the verb, comprehenders’ expectations for that verb become less

sharp, indicating that they might be predicting the next word given a lossy representation

of the context. This idea leads the authors to conjecture an idea similar to lossy-context
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surprisal (Safavi et al., 2016, section 8.1.2). Overall they conclude that effects at the

intersection of expectations and memory may be highly specific to languages and con-

structions. Lossy-context surprisal theory would hold that, if there is a real difference

between Hindi and Persian in their locality effects, the difference is driven by the differ-

ences in the magnitude of mutual information in the dependencies involved.

We hope that the idea of information locality creates further interest in these kinds of

experiments crossing distance with prediction strength. Information locality predicts that

dependencies where the two words have high pointwise mutual information will be more

susceptible to locality effects. While the prediction is clear, it may prove challenging to

find the effect experimentally, because it is inherently an interaction, thus requiring high

power, and also because large datasets are required to get reliable estimates of pointwise

mutual information from corpora.

Information locality also predicts locality effects for words that are not linked in a

direct dependency. The information locality effect depends on the pointwise mutual infor-

mation between words, and it is easily possible that there is nonzero pointwise mutual
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Fig. 9. Mutual information between part-of-speech tag pairs at various distances across corpora. The blue

line is the mutual information for all word pairs; the red line is the mutual information for word pairs in a

syntactic dependency relationship. The main point of this figure is that mutual information falls off with dis-

tance, but it also gives evidence for the HDMI hypothesis; in this connection, the distances where the differ-

ence between the mutual information of all word pairs and the mutual information of syntactically dependent

words is statistically significant by a Monte Carlo permutation test over observations at p < .005.
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information among words in indirect dependency relationships, such as two words that

are co-dependent on a shared head. We predict weak locality effects involving words in

such indirect dependency relationships.

5.3.3. Locality and antilocality
As a unified model of effects of expectation and memory in sentence processing,

lossy-context surprisal theory predicts locality effects in certain circumstances and antilo-

cality effects in others. The question arises: when do we expect locality versus antilocal-

ity effects? Here we show that, typically, we expect antilocality effects when the

intervening material that splits up a dependency is highly predictive of the second ele-

ment of the dependency, and otherwise we predict locality effects.

Suppose we have two words: a context word C and a target word W, where C and W
are linked in a dependency relationship, and there might be one or more intervening

words X between them. Our goal is to predict processing difficulty for the target word W
as part of two different sequences: CW versus CXW. A locality effect would mean W is

harder as part of CXW; an antilocality effect would mean W is easier as part of CXW,

when compared to CW. Information locality means that the predictive information in C
about W might be lost if many words appear between C and W, thus making W harder in

context. But if those intervening words are themselves highly predictive of W, then the

information locality effect may be cancelled out.

Here we derive a basic prediction: We always predict an antilocality effect when the

mutual information of W and X is greater than the mutual information between W and C.
We deduce this prediction algebraically. According to Eq. 11, the predicted processing

difficulty of W preceded immediately by C is approximately:

DðW jCÞ ¼ hðWÞ � ð1� e1ÞIC;

where h(W) is the unigram surprisal of W, e1 is the probability that an immediately pre-

ceding word is erased in the memory representation, and IC ¼ pmiðC; WÞ. Now we com-

pare to the approximate predicted processing difficulty of W preceded by CX, with X an

intervening word:5

DðW jCXÞ ¼ hðWÞ � ð1� e1ÞIX � ð1� e2ÞIC;

where IX ¼ pmiðX; WÞ, and e2 is the probability that a word two positions back in mem-

ory will be erased, or equivalently, the proportion of information retained in memory

about the word two positions back. Locality effects correspond to DðWjCÞ\DðW jCXÞ—
that is, processing W is harder given the additional intervening context X. Antilocality
effects correspond to the opposite situation: We predict antilocality effects when

DðW jCÞ[DðW jCXÞ.6 Therefore, in terms of IC, IX, e1, and e2, we expect a locality

effect when the following condition holds:
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D W jCð Þ\D WjCXð Þ
h Wð Þ � 1� e1ð ÞIC\h Wð Þ � 1� e1ð ÞIX � 1� e2ð ÞIC

1� e1ð ÞIX\ 1� e1ð ÞIC � 1� e2ð ÞIC
1� e1ð ÞIX\ e2 � e1ð ÞIC

IX
IC
\

e2 � e1
1� e1

:

ð13Þ

Eq. 13 says that we expect an antilocality effect depending on how predictive the context

word C and the intervener X are about the target word W (left-hand side), and on a mea-

sure of the increase of information loss from context position 1 to context position 2

(right-hand side).

We can immediately make some deductions from Eq. 13. First, we never predict a

locality effect when IX [ IC—that is, when the intervener X is more predictive of W than

the context word C is. To see this, consider the constraints on the value of the right-hand

side of Eq. 13. Because the values e represent progressive erasure noise, we know that

e1 	 e2	 1. Therefore, the numerator must be smaller than the denominator, and the value

of the right-hand side must be ≤1. But if IX [ IC, then the value on the left-hand side is

greater than 1. If the value on the left-hand side is greater than 1, then the inequality in

Eq. 13 can never be satisfied. Therefore, we never predict a locality effect when IX [ IC,
and instead predict either an antilocality effect or no effect of intervening context.

In conjunction with the HDMI hypothesis from Section 5.2, we can make a specific

prediction about how these effects relate to syntactic structure. If the intervening word X
is in a direct dependency relationship with W, then it will be highly predictive of W, lead-

ing to an antilocality effect. If the intervening word X is not in a direct dependency rela-

tionship with W, then it is on average not as strongly predictive of W as C is, and

therefore a locality effect is more likely—the balance will depend on the exact mutual

information values and on the rate of information loss in memory representations.

Konieczny and D€oring (2003) provide evidence for this pattern of effects in German: The

reading time at the main verb of a verb-final clause is found to be lower when a verb is

preceded by two of its dependents as opposed to one dependent followed by a grandchild.

Information locality generally predicts that if there is a sufficient amount of syntactically

distantly related intervening material, then locality effects will emerge even in the head-

final contexts which are typically host to antilocality effects.

5.4. Discussion

We have shown that lossy-context surprisal gives rise to a generalization called infor-

mation locality: that there will be processing cost beyond that predicted by plain surprisal

theory when words that predict each other are far from each other. Furthermore, we have

given evidence that dependency locality effects can be seen as a subset of information

locality effects. Thus, lossy-context surprisal provides a possible unified model of sur-

prisal and locality. The dependency locality theory (Gibson, 2000) was originally
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introduced as the syntactic prediction locality theory (SPLT) (Gibson, 1998). Information

locality could just as easily be called “prediction locality,” making clear how it general-

izes the SPLT. Lossy-context surprisal theory recovers the dependency locality theory

exactly in the case where all head-dependent pairs have high mutual information, all

other word pairs have negligible information, and the noise rate for a memory representa-

tion increases upon processing a new discourse referent.

The idea of information locality here is similar to the idea of a decay in cue effective-

ness presented in Qian and Jaeger (2012). In that work, the authors show that it is possi-

ble to predict entropy distributions across sentences under an assumption that predictive

cues decay in their effectiveness, which is essentially the state of affairs described by pro-

gressive noise.

We stress that pairwise information locality as stated here is an approximation to the

full predictions of lossy-context surprisal. It relies on the assumptions that (a) the noise

affecting word representations can be thought of as simply erasing information with a

probability that increases monotonically with distance, and (b) that context words make

independent contributions toward predicting the following word. Both of these assump-

tions are likely too strong, but we believe they are reasonable for the purpose of deriving

broad predictions.

The evidence presented here for information locality as a generalization of dependency

locality comes primarily from corpus studies of word order. Evidence from on-line pro-

cessing is mixed. This state of affairs reflects the state of affairs for dependency locality

effects: While apparent locality effects have been clearly observed in controlled experi-

ments (Balling & Kizach, 2017; Bartek et al., 2011; Grodner & Gibson, 2005; Nicenboim

et al., 2015), they have proven elusive in datasets of reading time for uncontrolled, natu-

ralistic text containing many varied syntactic constructions (Demberg & Keller, 2008a;

Husain et al., 2015). On the other hand, in studies of word order preferences in corpora,

dependency locality has had broad-coverage success and enjoys strong effect sizes

(Futrell et al., 2015; Rajkumar et al., 2016).

We believe the information locality interpretation of dependency locality effects may

provide an explanation for why locality effects have been hard to find in naturalistic read-

ing time datasets with broad coverage over different kinds of syntactic structures. From

the view of our theory, the dependency locality theory is a kind of first-order approxima-

tion to the full predictions of a theory of processing cost given lossy memory representa-

tions, which is only accurate when mutual information between the relevant two words in

a dependency is very high, mutual information with other words is negligible, and there

are no interactions between the dependent words and other words. Such cases can be

engineered in experiments, but may be rare in naturalistic text.

6. Conclusion

We have proposed that sentence processing phenomena involving working memory

effects can be thought of in terms of surprisal given lossy context representations. We
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showed two main theoretical results: first, that it is possible to use lossy-context surprisal

to model a previously puzzling phenomena at the intersection of expectations and mem-

ory, structural forgetting; and second, that it is possible to derive dependency locality

effects as a subset of a new, more general prediction of information locality effects.

6.1. Toward more sophisticated noise models

Throughout the paper we have used simplified noise models which are designed to

capture only the most general properties of memory: that information about individual

wordforms is lost, and that the noise rate affecting a representation generally increases

with time. However, more sophisticated memory models are possible, and we believe

they may be useful for explaining certain phenomena.

The idea of progressive noise in Section 5 arises from the idea that a memory repre-

sentation at time i is the result of successive applications of some noisy memory encod-

ing function to words in a sequence. So a representation of word wj (for j < i) will have
had the memory encoding function applied to it i � j times. Each application of the noise

increases the probability that some information about wj is lost, hence the assumption of

a progressively increasing noise rate.

While noise must logically be progressive in the sense that information about wj will

degrade over time (perhaps due to inherent decay or due to cumulative interference), it is

not the case that all words will degrade at the same rate. The idea of word representations

degrading at different rates raises the possibility that some positions in a sequence may

enjoy a lower degradation rate than others. In that case, word representations would still

contain less information the longer they have been in memory, but it would not necessar-
ily be the case that representations of more distant words are more degraded than repre-

sentations of closer words, as was assumed in Section 5. It would be possible to build

these different degradation rates into an erasure noise model by holding that words are

subjected to some probability of erasure at each application of the integration function,

but that base probability of erasure at each function application is less for some elements

compared to others.

One application of this idea could be to set a lower degradation rate for elements ear-

lier in a sequence than for elements later in a sequence. Such a model could be used to

instantiate primacy effects, the observed tendency for symbols at the beginning of a

sequence to be better remembered, by assuming a lower degradation rate for elements at

the beginning of a sequence.

Degradation rates could also be set adaptively. This is a means by which distribu-

tional statistics of a language could have a direct influence on memory representations.

At a word, a comprehender might decide what amount of resources to devote to main-

taining the representation of the current word in memory. Higher resources devoted to

representing a word would correspond to that word having a lower degradation rate

going forward. This resource-allocation decision could be made rationally on the basis

of predictions about the future utility of a word, which would depend on language

statistics. It may be possible to use this adaptive mechanism to instantiate biases such
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as a subject advantage, where matrix subjects are remembered more accurately than

other noun phrases in a sentence. This idea could also explain results such as those

reported by Husain et al. (2014).

The proper mathematical framework for describing this resource-allocation problem is

rate–distortion theory (Berger, 2003; Sims, 2018). Within rate–distortion theory, models

that optimally allocate limited memory resources to best predict the future of a sequence

have been studied, under the name of the Predictive Information Bottleneck (Still, 2014).

The Predictive Information Bottleneck has recently been applied to study the resource

requirements required for predicting linguistic sequences by Hahn and Futrell (2019).

Another direction for the noise distribution could be to define memory representations

and noise over those memory representations in terms of structured syntactic objects.

Then the probability of erasure might have to do with tree topology rather than linear dis-

tance. Memory-based theories of sentence processing have incorporated rich, syntactic

notions of locality (Graf, Monette, & Zhang, 2017); syntactic memory representations

and noise operations would provide a way to incorporate these distance metrics into a

surprisal framework.

6.2. Prospects for a broad-coverage model

This work has relied on mathematical derivations (Section 5) and calculations done

over toy grammars (Section 4). Here we discuss what would be required to make a

broad-coverage instantiation of the lossy-context surprisal model such that it could be

applied to, for example, reading time corpora (Frank, Monsalve, Thompson, & Vigliocco,

2013; Futrell et al., 2018; Husain et al., 2015; Kennedy, Hill, & Pynte, 2003; Kliegl,

Nuthmann, & Engbert, 2006; Yan, Kliegl, Richter, Nuthmann, & Shu, 2010).

There are algorithmic complexities in computing exact lossy-context surprisal values.

For each true context, it is necessary to enumerate all the possible noisy versions of

the context, and for each noisy version of the context, it is necessary to enumerate all

the possible true contexts that could have given rise to the noisy context. These enu-

merations may be infinite. The complexity of these enumerations can be brought down

by dynamic programming, but it is still computationally costly in our experience. A

broad-coverage model of lossy-context surprisal will have to either have a very simpli-

fied noise model (such as n-gram surprisal) or compute only approximate values—
which would be sensible, since lossy-context surprisal describes the operation of a max-

imally efficient processor and human sentence processing is likely only an approxima-

tion to this ideal.

We believe the most promising way to instantiate lossy-context surprisal in a broad

coverage model is using RNNs with explicitly constrained memory capacity (e.g., using

methods such as those developed by Alemi, Fischer, Dillon, & Murphy, 2017; Hahn &

Futrell, 2019). Lossy-context surprisal predicts that such RNNs will yield surprisal values

which are more predictive of human reading times than unconstrained RNNs (though any

RNN is operating under at least mild memory constraints).
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6.3. Computational and algorithmic levels of description

Classical surprisal theory is stated at a fully computational level of description, mean-

ing it describes the computational problem being solved in human sentence processing

(Marr, 1982). Surprisal theory claims that human incremental sentence processing is solv-

ing the problem of updating a posterior distribution about beliefs about the sentence. The

linking function from this view of sentence processing to observed processing difficulty

is optimality: It is assumed that the incremental update is maximally efficient, thus yield-

ing reading times proportional to surprisal. Memory-based theories, on the other hand,

are mechanistic models dealing with concrete representations of resources being used in

the course of processing; they are algorithmic-level models, in Marr (1982)’s terminol-

ogy. Where does lossy-context surprisal theory stand?

We think of lossy-context surprisal theory as a computational-level theory. It is a relax-

ation of the assumption in Hale (2001) and Levy (2008a) that the incremental representation

of a sentence contains complete information about the previous words in a sentence. Lossy-

context surprisal theory amounts to the claim that incremental sentence processing is solving

the problem of updating a posterior belief distribution given potentially noisy evidence about

the previous words in the sentence. There is still an efficiency assumption, in that the time

taken to do that update is proportional to surprisal. Thus, lossy-context surprisal theory takes

a computational view of the action of the sentence processor while making more realistic

assumptions about the representations that sentence processor has as input and output.

6.4. Future directions

Lossy-context surprisal provides a potential unified framework for explaining diverse

phenomena, but its full predictions have yet to be fleshed out and tested. The main novel

prediction about on-line processing is information locality effects: There should be

observed locality effects for words that predict each other even when they are not in syn-

tactic dependencies, and also syntactic dependency locality effects should be moderated

by the pointwise mutual information of the words in the dependency. In the domain of

word order, information locality makes the broad prediction that words with high mutual

information should be close, which provides potential explanations for word order univer-

sals that go beyond dependency length minimization, such as adjective ordering prefer-

ences (Futrell, 2019; Hahn, Degen, Goodman, Jurafsky, & Futrell, 2018).

It remains to be seen whether all effects of memory can be subsumed under lossy-context sur-

prisal. The phenomena of similarity-based interference in agreement and anaphora interpretation

remain unexplored from this perspective (J€ager et al., 2017). We hope the present work intensi-

fies research into the intersection of expectation and memory in sentence processing.
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Notes

1. One issue with the idea of dependency locality effects is how to define the distance

between words linked in a dependency. The dependency locality theory (Gibson,

2009, 1998) proposes to count the number of intervening new discourse referents,

based on evidence that, for example, object-extracted relative clauses with pronom-

inal subjects are easier than object-extracted relative clauses with full NP subjects

(Gennari & MacDonald, 2015; Gordon, Hendrick, & Johnson, 2018b, 2001; Reali

& Christiansen, 1998; Traxler, Morris, & Seely, 2002; Warren & Gibson, 2002).

Other theories have simply counted the number of intervening words (Demberg &

Keller, 2009); this is also common practice in studies of production preferences

and in corpus studies (Ferrer-i-Cancho, 2004; Futrell, Mahowald, & Gibson, 2006;

Gildea & Temperley, 1999; Rajkumar, van Schijndel, White, & Schuler, 2012;

Temperley, 2004; Wasow, 2001). We will see that it is possible to accommodate a

large variety of distance metrics in the lossy-context surprisal version of depen-

dency locality effects.

2. Also, the grammar is restricted to embedding depth 2; that is, each nonterminal

symbol can only be self-embedded twice at most. The reason for this restriction is

technical: We calculate probabilities by enumerating all the possible sentences, and

therefore we need the number of sentences to be finite. We show results extending

to embedding depth 3 in Supplementary Material B.

3. Note that pointwise mutual information can be negative, indicating a situation

where knowing a value Y makes another value X more surprising. However, the

average pointwise mutual information over a whole joint distribution P(X, Y) must

always be nonnegative (Cover & Thomas, 2006). This fact means that on average,

knowing the value of Y will either reduce the surprisal of X, or leave the surprisal

of X unchanged (in the case where Y and X are independent).

4. We use two different forms of noise in the model of structural forgetting (Section 4)

and in the derivation of information locality. Erasure noise, used in the derivation

of information locality, takes a word and replaces it with a special symbol indicat-

ing that a word was erased; deletion noise makes a word disappear without a trace.

The reason for this difference has to do with mathematical convenience, and we do
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not think the distinction between these noise models has deep theoretical import.

Essentially, erasure noise is preferable in the information locality derivation

because it permits an easy mathematical expression of the surprisal given the noisy

representation. Deletion noise is preferable in the structural forgetting model

because it creates a wider variety of possible noisy contexts given true contexts,

and thus makes a larger variety of possible inferred contexts available during the

noisy channel decoding process. Another difference is that the noise rate increases

with distance in the information locality model, but it is constant in the structural

forgetting model. We believe the differences between these noise models are imma-

terial; the basic results should hold for any noise model with the basic property that

specific information about wordforms is lost (see Supplementary Material A).

5. As above, this assumes negligible interaction information between C, W, and X.
6. There is an uninteresting case where IX is negative—that is, where the intervener

directly lowers the probability of the target word W. In this case, the intervention

of X will always make the processing of W harder, not because of any true locality

effect, but simply because X lowers the probability of W. To avoid this uninterest-

ing case, the derivation in this section assumes IX > 0. Similarly, we assume

IC > 0.
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